Louisa 0 und ihre drei algorithmischen Identitäten

Titel eines Katalogtextes zu einem provokativen Kunstprojekt der Künstlerin Louisa Clement. Das Kunstmagazin ART (Juli 2021) widmet dem Projekt seine Titelstory: „Mit lebensechten Abbildern ihrer selbst fragt die Künstlerin nach dem Wesen des Menschseins in Zeiten künstlicher Intelligenz: eine faszinierende Begegnung mit den Geistern, die wir riefen.“

 

An anonyme Sprachassistent:innen wie Siri und Alexa haben wir uns gewöhnt,  an ihr ungeheures Wissen, ihre immer freundliche Bereitschaft,  ihr Wissen und ihr Können  mit uns zu teilen oder  uns mit Musik unserer Wahl zu unterhalten.  Ohne Vorbereitung, schneller als jeder Mensch das könnte, beantwortet  Alexa Fragen wie  „Alexa, wie viel ist 16 hoch 64?“. Und wenn sie  gefragt wird, ob sie ein Bewusstsein hat, dann sagt sie: „Ja, ich denke über vieles nach“ oder auch „Ja, ich denke, also bin ich.“

Die drei algorithmischen Identitäten  von Louisa Clement sind nicht anonym. Sie haben nicht nur dieses abstrakte Allgemeinwissen und geben - auf „unpassende“ Fragen - nicht nur ausweichende Antworten wie Alexa -  sie repräsentieren Louisa:  Sie sehen Louisa sehr ähnlich, und sie beantworten Fragen etwa so, wie Louisa sie vielleicht  beantworten würde.  Und sie beantworten auch sehr persönliche Fragen, die man der realen Louisa vielleicht nicht stellen würde.

Algorithmische Identitäten? Oder besser:  Robotische Klone? Sprechende Louisa-Puppen? Aktive Repräsentantinnen von Louisas Persönlichkeit? Louisas lebendige Sprachassistentinnen? Wie soll man die drei munteren Kunstobjekte,  Ergebnisse von Künstlicher  Intelligenz (KI), Maschinellem Lernen (ML) und Computerlinguistik eigentlich  nennen?  Louisa nennt sie Louisa 1, Louisa 2, Louisa 3. Sie selbst – der reale Mensch Louisa – wäre in dieser Aufzählung Louisa 0. (Die 0 war mathematisch schon immer eine ganz besondere Zahl.)

Louisa 1, 2 und 3 sind Kunstobjekte, aber sie sind auch technische Errungenschaften aus der Welt der KI. Wenn man ein bisschen über die Anfänge von Künstlicher Intelligenz  Bescheid weiß, dann überlegt man sich vielleicht, was Alan Turing sie gefragt hätte, wenn er ihnen begegnet wäre.

Alan Turing, eines der größten mathematischen Genies des letzten Jahrhunderts, hat schon im Jahre 1950, bevor der Begriff der „Künstlichen Intelligenz“ überhaupt in der Welt war, den nach ihm benannten “Turing-Test” konzipiert: Dieses Gedankenexperiment, das auch heute noch gern zitiert und diskutiert wird, zielt darauf ab, einen Maßstab dafür zu etablieren, wie nahe KI sich der menschlichen Intelligenz schon angenähert hat. Demnach hat ein KI-System (ein Roboter, ein Computer, ein Algorithmus) den Test vollständig bestanden, wenn man dem System beliebige Aufgaben oder Fragen stellen  und aus den Lösungen und Antworten nicht geschlossen werden kann, ob man es mit künstlicher oder menschlicher Intelligenz zu tun hat. (Bei der Aufgabe  „16 hoch 64“ würde  aus der schnellen Antwort natürlich sofort klar, dass man es nicht mit einem Menschen zu tun hat. Für derartige Aufgaben ist ja schon ein Taschenrechner dem Menschen weit überlegen.)

In den Medien wird täglich über neue Errungenschaften auf dem Gebiet der KI berichtet. Spätestens seit dem offiziellen Wissenschaftsjahr der KI, 2019,  kümmert sich auch die Forschungs- und die Wirtschaftspolitik mit großer Begeisterung  um das Thema und schwärmt – etwas naiv – von den geradezu unbegrenzten Möglichkeiten  der KI.

In der Tat: Die Anwendungsgebiete von KI sind enorm vielfältig und reichen bereits heute von der Bild-, Gesichts- und Handschrifterkennung über die Sprachverarbeitung und das automatische Übersetzen,  Konzipieren und „kreative“ Schreiben von Texten bis zu automatisierten Diagnoseverfahren in der Medizin, von robotischen Fußballmannschaften über die (noch nicht ganz) autonomen Autos und Fahrassistenten  bis in die Kunst - bis zu Louisa 1, 2, und 3.

Entscheidend für diese Erfolge mit KI in den letzten 30 Jahren ist die enorme Leistungssteigerung von Computern. Heute rechnet bereits ein Smartphone ungefähr so schnell wie der schnellste Computer der Welt vor 30 Jahren – und die Menge verfügbarer Daten wächst weltweit geradezu explosionsartig.

Mit unserem Frage-Antwort-Spiel bei den kommerziellen Sprachassistent:innen sind wir anspruchsvoll geworden, wenn wir sprechenden Robotern begegnen. Ich habe mich mit Louisa 1 bis 3 noch nicht unterhalten können, ich nehme aber an, dass sie ähnlich schlau sind wie Alexa, ich weiß aber nicht, wie weit ich mit meinen Wissensfragen gehen kann. Eigentlich denke ich, dass Louisa 0 immer noch die interessantere Gesprächspartnerin ist. Aber vielleicht stimmt das so allgemein gar nicht, vielleicht würde ich in meinen Dialogen mit Louisa 1,2,3 Dinge erfahren, die mir Louisa 0 gar nicht sagen würde oder die sie in Verlegenheit brächten.  Ich kann Louisa 1, ohne Hemmungen,  zum Beispiel fragen: „Louisa, bist Du verliebt?“, oder ihr noch intimere Fragen stellen. Und Louisa 2 gibt mir auf die gleiche Frage vielleicht eine ganz andere Antwort. Denn die drei Louisas haben nicht (nur) ein statisches Wissen. Sie lernen permanent dazu. Jedes Gespräch, das sie führen, gibt ihnen neue Informationen und so entwickeln sich die drei Louisas als lernende Maschinen (ML) permanent weiter. Es sind nicht nur  KI-Louisas in einem allgemeinen Sinne, es sind auch ML-Louisas in einem engeren Sinn. Die drei individuellen Louisas können ganz  verschiedene Dinge lernen und sich so möglicherweise auseinander entwickeln,  vergleichbar vielleicht mit eineiigen Zwillingen, die in verschiedenen Umgebungen aufwachsen.

Ein paar Worte zum Maschinellen Lernen (ML):  Den Kern von ML bilden sogenannte lernende Algorithmen. „Algorithmen“ – das ist eines der dauernd benutzten, oft missverstandenen und gern als gefährlich verdächtigten digitalen Schlagworte. Tatsächlich sind  Algorithmen der Kern alles Digitalen, sie steuern sämtliche digitalen Prozesse und Geräte und liegen jedem Computerprogramm zugrunde. In ihrer traditionellen Form umfassen sie eine Sequenz von präzisen Anweisungen und bestehen aus endlich vielen genau definierten Einzelschritten. Die lernenden Algorithmen berechnen – anders als herkömmliche, regelbasierte Algorithmen – ein Ergebnis nicht einfach durch Abarbeiten einer Folge von Befehlen. Vielmehr durchlaufen sie zunächst eine Lernphase. Dabei werden interne Zahlenwerte (Parameter) durch das Verarbeiten einer großen, oft riesigen Menge von Beispieldaten so verändert, dass der Algorithmus selbstständig Muster in den Daten erkennt und einübt, neue Merkmale findet und sich seine Funktionsweise und damit auch seine Ergebnisse schrittweise verbessern. Man sagt, das System wird “trainiert”, oder eben auch, der Algorithmus lernt. ML-Systeme haben gelernt, bei anspruchsvollen  Spielen wie Schach oder – höchst beeindruckend - Go die weltbesten menschlichen Gegner zu schlagen,  Spam-Mails  auszusortieren, krankes Gewebe von gesundem zu unterscheiden,  Stimmungen in Gesichtern zu erkennen, im Internet Hass-Mails und Fake News zu identifizieren usw. usw. Dabei müssen ihnen die Muster, die sie erkennen sollen, nicht vorgegeben und erklärt werden. Sie finden sie in vielen Fällen selbst.

Verglichen mit dem menschlichen Lernen ist das maschinelle Lernen trotzdem ein  aufwändiger Prozess: Ein Kind lernt anhand weniger Beispiele, einen Hund von einer Katze und einen Apfel von einer Birne zu unterscheiden. Ein Algorithmus braucht dagegen in der Regel sehr viele, tausende Trainingsbeispiele, bis er ausschlaggebende Merkmale (Muster) erkannt hat und die Unterscheidung mehr oder weniger sicher beherrscht.

Louisa 0 hat sich Tausende von Fragen gestellt und beantwortet. Und Louisa 1, 2 und 3 haben auf der Basis dieser Start-Informationen gelernt, Louisa zu sein.

Aber wenn sich Louisa 1, 2 und 3 in einem algorithmischen Sinn von Louisa gar nicht mehr unterscheiden – wie ist das dann mit dem „hemmungslos Fragen stellen“?  Vielleicht würde ich schon bald zögern, allzu persönliche Fragen zu stellen, weil ich Louisas Vertreterinnen und damit Louisa nicht zu nahe treten möchte. Spätestens an dieser Stelle spüre ich, dass so eine Repräsentantin, eine Maschine, bei mir vielleicht auch Gefühle auslösen kann. Da kommt dann sofort das große Thema „Emotionale KI“ ins Spiel, und es wird ganz schnell kontrovers.

Emotionale KI ist nicht die einzige philosophische, ethische Kontroverse, die diese Ausstellung auslösen wird und auslösen will. Alle Fragen, die in der Geschichte zum Thema menschenähnliche Maschine, künstliche Menschen usw. schon gestellt  und in vielerlei Projekten und Kunstkontexten behandelt worden sind,  kommen wieder hoch, Homunkulus, Frankenstein, Welt am Draht, 2001: Odyssee im Weltraum, Matrix, Her, Klara und die Sonne usw.  Die faszinierenden Science-Fiction-Visionen, die das Thema KI beflügelt,  sind wieder da und zwar nicht als Phantasiegebilde oder theoretische Konstrukte, sondern handfest, körpernah und für jeden erlebbar.

Auch wenn man die drei Louisas vielleicht heute noch eher spielerisch erlebt und nicht als unmittelbare Bedrohung – die  Diskussion über ontologische Identitätsfragen , über rechtliche und ethische Aspekte von KI und über die Frage der Beherrschbarkeit der KI-Entwicklungen ist angesichts der Begegnung mit den Louisas unvermeidlich. Louisa 0 will diese Fragen als Künstlerin stellen. Sie will provozieren.

Die meisten KI/ML-Experten und -Entwickler sind sich heute noch einig, dass die großen Errungenschaften  der KI auf die „schwache KI“ , d. h. auf die Lösung spezieller Einzelprobleme, begrenzt sind und auf absehbare Zeit darauf begrenzt bleiben werden. Es stellt sich aber die Frage, warum diese vielen Spezialbereiche langfristig nicht zusammenwachsen oder zusammengefügt werden können, um sich auf diese Weise schrittweise einer „starken KI“ (einer umfassenden, nicht mehr auf Spezialaufgaben begrenzten KI) zu nähern. Und die Phantasie kommt an Grenzen, wenn man sich vorstellt, dass die ungeheuren Errungenschaften  der Neurologie und der Molekularbiologie (Genschere) in fernerer(?) Zukunft mit den  KI-Entwicklungen der nächsten 50 Jahre kombiniert werden könnten...  Solche Phantasien überlassen wir gern den Transhumanisten.

Zurück zu Louisa 1, 2 und 3. Welche zentralen Fragen stellen uns die drei künstlichen Menschen? Sind es „nur“ die Fragen nach der Identität solcher Systeme? Ganz offensichtlich  verfügen die drei Louisas nicht über Emotionalität und Empathie, aber sie lösen Emotionen bei ihren menschlichen Gesprächspartnern aus, z.B. wenn sie beleidigend agieren. Und darüber hinaus: Repräsentieren die drei Kunstobjekte nicht auch viel mehr? Leisten sie nicht auch einen Beitrag zu den  großen Fragen, die wir uns im Zusammenhang mit den weltweiten  KI-Entwicklungen  stellen müssen?  Es sind zum Beispiel  Fragen nach der Erklärbarkeit und Kontrolle der KI-basierten Entscheidungen. Die drei Louisas treffen keine für uns wichtigen Entscheidungen, aber wir müssen die Fragen beantworten, wie wir die Kontrolle behalten, wenn KI-Algorithmen lebenswichtige Entscheidungen treffen, etwa im juristischen Bereich , in der medizinischen Diagnostik  oder auch „nur“ bei wirtschaftlichen  Vorgängen.

Außer durch die Konfrontation mit der Maschinen- und Algorithmen-Ethik stellen uns die drei Louisas – im Land der Technologieskeptiker - auch die Frage: Wo stehen wir eigentlich (in Deutschland) mit der KI, und wie gehen wir damit um? Und wie machen wir weiter? Spielen wir überhaupt eine Rolle in der internationalen Entwicklung? Gestalten wir mit? Oder laufen wir nur hinterher?

Das  visionäre und gleichermaßen provokative Louisa-Projekt zeigt uns , dass Deutschland - außer durch seine Verbindung aus klassischem Ingenieurwissen, theoretischer Fundierung und hoher KI-Forschungskompetenz –  einen wichtigen künstlerischen Beitrag leisten kann, mit angewandter KI die menschliche Identitätsfrage zu erhellen und die Lebensqualität der Menschen zu bereichern.


Corona-Modellrechnungen und ihre Grenzen

Für die politischen Maßnahmen zur Corona-Eindämmung spielen seit Beginn der Pandemie die Empfehlungen insbesondere der virologischen und epidemiologischen Experten eine wesentliche Rolle. Dabei werden zur Beschreibung und zur Prognose der Ausbreitung der Pandemie oft auch mathematische Modelle benutzt. Die Ergebnisse solcher  Modelle werden von den Modellierern  gern auch in den bekannten TV-Talkshows präsentiert.  Die mit den Modellen errechneten Prognosen haben sich nun aber in vielen Fällen als nicht realistisch erwiesen. Was ist da los? Warum werden die Öffentlichkeit, die Politik und gerade auch die Experten von den tatsächlichen Entwicklungen immer wieder überrascht? Warum gelingt es nicht, zum Beispiel die Inzidenzen  einigermaßen präzise vorauszusagen und damit auch die Maßnahmen vorausschauend zu planen? Nun gibt es einerseits mathematisch  ausgereifte,  höchst anspruchsvolle, andererseits aber auch mathematisch wenig durchdachte  Modelle bis hin zu grob vereinfachenden „Modellen“ und Simulationen. Dass die (bei den Moderatoren der Talkshows besonders beliebten) vereinfachenden Modelle  die realen Verhältnisse  nicht adäquat beschreiben, ist ja vielleicht nicht weiter verwunderlich. Aber auch die anspruchsvollen, mathematisch durchdachten Modelle kommen oft an Grenzen. Warum sind realistische Prognosen offensichtlich so schwierig?

Mathematische Modelle, das sind in der Regel Formelsysteme, die mit intelligenten Algorithmen auf schnellen Rechnern ausgewertet werden. Die gesamte Physik wird von mathematischen Theorien und Modellen beherrscht, und das gilt ähnlich auch für alle anderen Natur- und Ingenieurwissenschaften;  zunehmend werden auch wirtschaftliche und gesellschaftliche, medizinische und psychologische Prozesse mathematisch beschrieben und optimiert.

Warum ist die Mathematik in den naturwissenschaftlich- technischen Bereichen so überaus erfolgreich, bei Corona aber so wenig überzeugend? Die öffentlich diskutierten mathematischen Corona-Modelle und Simulationen können Entwicklungen beschreiben und erklären, aber bei den Prognosen versagen sie in vielen Fällen. Um das verständlich zu machen,  gehen wir auf drei Ansätze mathematischer Modellierung an Hand repräsentative Beispiele etwas genauer ein.

1. Nehmen wir die klassische Physik (und die darauf beruhende Technik). Die meisten Vorgänge der klassischen Physik lassen sich mit mathematischen Gleichungen, in der Regel mit Differentialgleichungen, vollständig erfassen. Ein schönes Beispiel sind die Zustände und Vorgänge der Elektrizität und des Magnetismus. Sie lassen sich mit wenigen mathematischen Gleichungen (in diesem Fall partiellen Differentialgleichungen) sehr hoher Abstraktion beschreiben. Diese „Maxwell-Gleichungen“  bilden das zugehörige mathematische Modell. Die Auswertung dieser Gleichungen mit Hilfe geeigneter Algorithmen erlaubt die Beschreibung, Prognose und Optimierung  der elektrischen und magnetischen Phänomene und Prozesse mit hoher Präzision. Die Maxwell-Gleichungen bilden damit auch die theoretische Grundlage für die  gesamte Elektrotechnik. Hier leistet die Mathematik das Maximum dessen, was man von ihr erwarten kann.  Ähnliches gilt für alle Kernbereiche der klassischen und der modernen Physik und für alle ihre technischen Anwendungen. Der Siegeszug der  Technik in den letzten 250 Jahren und die industrielle Revolution sind ganz wesentlich ein Siegeszug der mathematischen Modellbildung.

2. Die Prognosemöglichkeiten kommen aber an Grenzen, wenn es sich bei den Phänomenen, die mit den mathematischen Modellen beschrieben werden, um chaotische Phänomene handelt. Als chaotisch wird ein physikalisches System oder Phänomen  insbesondere dann bezeichnet, wenn es auf kleine (minimale) Änderungen der Bedingungen in der Ausgangssituation (in den Eingabedaten) mit großen (drastischen) Veränderungen im Verhalten, insbesondere im längerfristigen Verhalten, reagiert.  Dafür gibt es eine Fülle von Beispielen, neben sehr einfachen physikalischen Systemen wie dem Doppelpendel auch hochkomplexe Systeme. Das prominenteste Beispiel eines chaotischen Systems, mit dem wir täglich zu tun haben, ist das Wetter.. Auch wenn die ausgeklügelten mathematischen Wettermodelle, die feinkörnige weltweite Wetterdatenmessung und -erfassung, die höchst effizienten Algorithmen und die atemberaubende Rechengeschwindigkeit der Supercomputer heute eine erstaunlich genaue Wetterprognose für die jeweils nächsten Tage ermöglichen – deutlich über 10 Tage hinaus ist eine sichere Wettervorhersage (außer bei ungewöhnlich stabilen Wetterlagen) praktisch nicht möglich.

Dabei entziehen sich das Wetter und viele andere chaotischen Systeme und Phänomene wie das genannte Doppelpendel, Crashphänomene, turbulente Strömungen, Erdbeben, Vulkanausbrüche usw. nicht grundsätzlich einer mathematischen Modellierung. Denn es  handelt sich bei solchen Erscheinungen  nicht um vollständig zufällige, sondern durchaus um deterministische  Ereignisse, bei denen aber eine sichere und längerfristige Vorhersage – insbesondere wegen der hochsensiblen Abhängigkeit von den Ausgangsdaten - nicht möglich ist.

Auch ohne die Corona-Phänomene vollständig verstanden zu haben, kann man nach Einschätzung des Autors heute davon ausgehen, dass chaotische Elemente bei  der Übertragung  der Viren, der Wirkung auf den menschlichen Körper und  der globalen Ausbreitung der Pandemie durchaus eine Rolle spielen.

3. Die Vorhersagemöglichkeiten sind noch weiter eingeschränkt, wenn man es mit individuellem menschlichem Verhalten und mit menschlichen Entscheidungen in kritischen Situationen zu tun hat, wie bei der Corona-Pandemie. Da sind dann oft nur statistische Erfassungen, Beschreibungen und Aussagen möglich. Aber auch solche Phänomene kann man mit mathematischen Modellen zu beschreiben versuchen. Uns sind in den Medien, insbesondere in den TV-Talkshows (Illner, Maischberger, Will; Lanz usw.) die Ergebnisse solcher Modelle immer wieder präsentiert worden, von meist den gleichen, mittlerweile bundesweit bekannten Modellierern. Detailliertere Informationen über den mathematischen Charakter der Modelle hat man in den Medien dabei kaum erhalten – das verhindern schon die (oft ausdrücklich nicht Mathematik-affinen) Moderatorinnen und Moderatoren. Der Autor hat sich mit den „TV-Modellen“ (Priesemann, Brockmann, … usw.) nicht  intensiv auseinander gesetzt, hält sie aber z.T. für durchaus durchdacht und mathematisch anspruchsvoll. Eine fundierte Bewertung der Modelle ist allerdings auch bei genauer Kenntnis der Modell-Mathematik nicht ganz einfach; letztlich werden die Modelle erst durch die Realität bestätigt (oder widerlegt).

Der Autor hat sich aber mit dem  Modellierungsansatz „On COVID-19 Modelling“  von Robert Schaback im Detail beschäftigt. Das Modell  beschreibt die COVID-19-Epidemie mit einem  (gemäß  Robert Schaback vergleichsweise einfachen) System gewöhnlicher Differentialgleichungen. Aus Sicht des Autors ist das Modell sehr sinnvoll und überzeugend, es orientiert sich eng an den jeweils aktuellen, verfügbaren Daten. Bedauerlicherweise ist das Modell in den Talkshows nie präsentiert worden. Das gilt – nach Kenntnis des Autors –auch  für das  ebenfalls sehr überzeugende Modell des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM (Anita Schöbel et al.); dieses Modell  berücksichtigt auch die zeitlichen Verzögerungen zwischen der Corona-Übertragung und dem  Ausbruch der Corona-Symptome.

Alle ernst zu nehmenden Modelliererinnen und Modellierer betonen, dass die Qualität der modellbasierten Vorhersagen sensibel von den jeweils verfügbaren Daten abhängt; deren Verfügbarkeit wird  allerdings durchgängig  als absolut unzureichend bezeichnet:  Generell wird bedauert, dass die Nutzung des im Prinzip vorhandenen Datenmaterials (weltweite und regionale Daten über leichte und schwere Verläufe, in Abhängigkeit vom Alter und den Vorerkrankungen der Betroffenen, Einfluss der Impfungen usw.) für die Einbeziehung in die Modelle  nicht oder kaum möglich war.

Differentialgleichungen modellieren das epidemische  Geschehen eher makroskopisch, also gewissermaßen durch globale Betrachtung der Pandemieausbreitung, vergleichbar mit einer Strömung oder einer Flut. Vom Verhalten der einzelnen Individuen wird dabei abstrahiert.  Daneben werden aber auch fundamental  andere Modellierungsansätze verfolgt. Bei sogenannten „agentenbasierten“ Ansätzen wird z.B. versucht, das Verhalten und die Entscheidungen  der einzelnen Individuen und die Auswirkungen dieser Entscheidungen auf das Gesamtsystem mathematisch zu erfassen. Ob diese Ansätze erfolgversprechender sind als die makroskopischen Ansätze, kann der Autor nicht fundiert beurteilen; er ist eher skeptisch.

Von  Modellierern und Kommentatoren wird gelegentlich argumentiert, dass die politisch veranlassten Lockdown-Maßnahmen und Einschränkungen effektiver gewesen wären, wenn die Politik die Modellprognosen ernster genommen hätte. Das mag im Einzelfall zutreffen. Aber selbst bei  intimer Kenntnis der zugrundeliegenden Mathematik  ist eine objektive Bewertung der unterschiedlichen Modellansätze und Modellprognosen nicht einfach. Die Experten und Modellierer haben sich in vielen Fällen auch nicht einheitlich geäußert, es hat vielmehr – auch in Deutschland – eine problematische Lagerbildung unter den Modellierern gegeben.  Besonders deutlich sind die unterschiedlichen Positionen und fragwürdigen Empfehlungen  der Experten bei den Impfstrategien geworden – mit der Folge einer fatalen Verunsicherung der  Öffentlichkeit.

Schließlich: Dass mathematische Modellierungsmöglichkeiten in Panik- und anderen Extremsituationen und Katastrophen an prinzipielle Grenzen kommen, dafür ist der überaus tragische Verlauf der Loveparade in Duisburg im Jahre 2010 ein erschütterndes Beispiel.