Louisa 0 und ihre drei algorithmischen Identitäten

Titel eines Katalogtextes zu einem provokativen Kunstprojekt der Künstlerin Louisa Clement. Das Kunstmagazin ART (Juli 2021) widmet dem Projekt seine Titelstory: „Mit lebensechten Abbildern ihrer selbst fragt die Künstlerin nach dem Wesen des Menschseins in Zeiten künstlicher Intelligenz: eine faszinierende Begegnung mit den Geistern, die wir riefen.“

 

An anonyme Sprachassistent:innen wie Siri und Alexa haben wir uns gewöhnt,  an ihr ungeheures Wissen, ihre immer freundliche Bereitschaft,  ihr Wissen und ihr Können  mit uns zu teilen oder  uns mit Musik unserer Wahl zu unterhalten.  Ohne Vorbereitung, schneller als jeder Mensch das könnte, beantwortet  Alexa Fragen wie  „Alexa, wie viel ist 16 hoch 64?“. Und wenn sie  gefragt wird, ob sie ein Bewusstsein hat, dann sagt sie: „Ja, ich denke über vieles nach“ oder auch „Ja, ich denke, also bin ich.“

Die drei algorithmischen Identitäten  von Louisa Clement sind nicht anonym. Sie haben nicht nur dieses abstrakte Allgemeinwissen und geben - auf „unpassende“ Fragen - nicht nur ausweichende Antworten wie Alexa -  sie repräsentieren Louisa:  Sie sehen Louisa sehr ähnlich, und sie beantworten Fragen etwa so, wie Louisa sie vielleicht  beantworten würde.  Und sie beantworten auch sehr persönliche Fragen, die man der realen Louisa vielleicht nicht stellen würde.

Algorithmische Identitäten? Oder besser:  Robotische Klone? Sprechende Louisa-Puppen? Aktive Repräsentantinnen von Louisas Persönlichkeit? Louisas lebendige Sprachassistentinnen? Wie soll man die drei munteren Kunstobjekte,  Ergebnisse von Künstlicher  Intelligenz (KI), Maschinellem Lernen (ML) und Computerlinguistik eigentlich  nennen?  Louisa nennt sie Louisa 1, Louisa 2, Louisa 3. Sie selbst – der reale Mensch Louisa – wäre in dieser Aufzählung Louisa 0. (Die 0 war mathematisch schon immer eine ganz besondere Zahl.)

Louisa 1, 2 und 3 sind Kunstobjekte, aber sie sind auch technische Errungenschaften aus der Welt der KI. Wenn man ein bisschen über die Anfänge von Künstlicher Intelligenz  Bescheid weiß, dann überlegt man sich vielleicht, was Alan Turing sie gefragt hätte, wenn er ihnen begegnet wäre.

Alan Turing, eines der größten mathematischen Genies des letzten Jahrhunderts, hat schon im Jahre 1950, bevor der Begriff der „Künstlichen Intelligenz“ überhaupt in der Welt war, den nach ihm benannten “Turing-Test” konzipiert: Dieses Gedankenexperiment, das auch heute noch gern zitiert und diskutiert wird, zielt darauf ab, einen Maßstab dafür zu etablieren, wie nahe KI sich der menschlichen Intelligenz schon angenähert hat. Demnach hat ein KI-System (ein Roboter, ein Computer, ein Algorithmus) den Test vollständig bestanden, wenn man dem System beliebige Aufgaben oder Fragen stellen  und aus den Lösungen und Antworten nicht geschlossen werden kann, ob man es mit künstlicher oder menschlicher Intelligenz zu tun hat. (Bei der Aufgabe  „16 hoch 64“ würde  aus der schnellen Antwort natürlich sofort klar, dass man es nicht mit einem Menschen zu tun hat. Für derartige Aufgaben ist ja schon ein Taschenrechner dem Menschen weit überlegen.)

In den Medien wird täglich über neue Errungenschaften auf dem Gebiet der KI berichtet. Spätestens seit dem offiziellen Wissenschaftsjahr der KI, 2019,  kümmert sich auch die Forschungs- und die Wirtschaftspolitik mit großer Begeisterung  um das Thema und schwärmt – etwas naiv – von den geradezu unbegrenzten Möglichkeiten  der KI.

In der Tat: Die Anwendungsgebiete von KI sind enorm vielfältig und reichen bereits heute von der Bild-, Gesichts- und Handschrifterkennung über die Sprachverarbeitung und das automatische Übersetzen,  Konzipieren und „kreative“ Schreiben von Texten bis zu automatisierten Diagnoseverfahren in der Medizin, von robotischen Fußballmannschaften über die (noch nicht ganz) autonomen Autos und Fahrassistenten  bis in die Kunst - bis zu Louisa 1, 2, und 3.

Entscheidend für diese Erfolge mit KI in den letzten 30 Jahren ist die enorme Leistungssteigerung von Computern. Heute rechnet bereits ein Smartphone ungefähr so schnell wie der schnellste Computer der Welt vor 30 Jahren – und die Menge verfügbarer Daten wächst weltweit geradezu explosionsartig.

Mit unserem Frage-Antwort-Spiel bei den kommerziellen Sprachassistent:innen sind wir anspruchsvoll geworden, wenn wir sprechenden Robotern begegnen. Ich habe mich mit Louisa 1 bis 3 noch nicht unterhalten können, ich nehme aber an, dass sie ähnlich schlau sind wie Alexa, ich weiß aber nicht, wie weit ich mit meinen Wissensfragen gehen kann. Eigentlich denke ich, dass Louisa 0 immer noch die interessantere Gesprächspartnerin ist. Aber vielleicht stimmt das so allgemein gar nicht, vielleicht würde ich in meinen Dialogen mit Louisa 1,2,3 Dinge erfahren, die mir Louisa 0 gar nicht sagen würde oder die sie in Verlegenheit brächten.  Ich kann Louisa 1, ohne Hemmungen,  zum Beispiel fragen: „Louisa, bist Du verliebt?“, oder ihr noch intimere Fragen stellen. Und Louisa 2 gibt mir auf die gleiche Frage vielleicht eine ganz andere Antwort. Denn die drei Louisas haben nicht (nur) ein statisches Wissen. Sie lernen permanent dazu. Jedes Gespräch, das sie führen, gibt ihnen neue Informationen und so entwickeln sich die drei Louisas als lernende Maschinen (ML) permanent weiter. Es sind nicht nur  KI-Louisas in einem allgemeinen Sinne, es sind auch ML-Louisas in einem engeren Sinn. Die drei individuellen Louisas können ganz  verschiedene Dinge lernen und sich so möglicherweise auseinander entwickeln,  vergleichbar vielleicht mit eineiigen Zwillingen, die in verschiedenen Umgebungen aufwachsen.

Ein paar Worte zum Maschinellen Lernen (ML):  Den Kern von ML bilden sogenannte lernende Algorithmen. „Algorithmen“ – das ist eines der dauernd benutzten, oft missverstandenen und gern als gefährlich verdächtigten digitalen Schlagworte. Tatsächlich sind  Algorithmen der Kern alles Digitalen, sie steuern sämtliche digitalen Prozesse und Geräte und liegen jedem Computerprogramm zugrunde. In ihrer traditionellen Form umfassen sie eine Sequenz von präzisen Anweisungen und bestehen aus endlich vielen genau definierten Einzelschritten. Die lernenden Algorithmen berechnen – anders als herkömmliche, regelbasierte Algorithmen – ein Ergebnis nicht einfach durch Abarbeiten einer Folge von Befehlen. Vielmehr durchlaufen sie zunächst eine Lernphase. Dabei werden interne Zahlenwerte (Parameter) durch das Verarbeiten einer großen, oft riesigen Menge von Beispieldaten so verändert, dass der Algorithmus selbstständig Muster in den Daten erkennt und einübt, neue Merkmale findet und sich seine Funktionsweise und damit auch seine Ergebnisse schrittweise verbessern. Man sagt, das System wird “trainiert”, oder eben auch, der Algorithmus lernt. ML-Systeme haben gelernt, bei anspruchsvollen  Spielen wie Schach oder – höchst beeindruckend - Go die weltbesten menschlichen Gegner zu schlagen,  Spam-Mails  auszusortieren, krankes Gewebe von gesundem zu unterscheiden,  Stimmungen in Gesichtern zu erkennen, im Internet Hass-Mails und Fake News zu identifizieren usw. usw. Dabei müssen ihnen die Muster, die sie erkennen sollen, nicht vorgegeben und erklärt werden. Sie finden sie in vielen Fällen selbst.

Verglichen mit dem menschlichen Lernen ist das maschinelle Lernen trotzdem ein  aufwändiger Prozess: Ein Kind lernt anhand weniger Beispiele, einen Hund von einer Katze und einen Apfel von einer Birne zu unterscheiden. Ein Algorithmus braucht dagegen in der Regel sehr viele, tausende Trainingsbeispiele, bis er ausschlaggebende Merkmale (Muster) erkannt hat und die Unterscheidung mehr oder weniger sicher beherrscht.

Louisa 0 hat sich Tausende von Fragen gestellt und beantwortet. Und Louisa 1, 2 und 3 haben auf der Basis dieser Start-Informationen gelernt, Louisa zu sein.

Aber wenn sich Louisa 1, 2 und 3 in einem algorithmischen Sinn von Louisa gar nicht mehr unterscheiden – wie ist das dann mit dem „hemmungslos Fragen stellen“?  Vielleicht würde ich schon bald zögern, allzu persönliche Fragen zu stellen, weil ich Louisas Vertreterinnen und damit Louisa nicht zu nahe treten möchte. Spätestens an dieser Stelle spüre ich, dass so eine Repräsentantin, eine Maschine, bei mir vielleicht auch Gefühle auslösen kann. Da kommt dann sofort das große Thema „Emotionale KI“ ins Spiel, und es wird ganz schnell kontrovers.

Emotionale KI ist nicht die einzige philosophische, ethische Kontroverse, die diese Ausstellung auslösen wird und auslösen will. Alle Fragen, die in der Geschichte zum Thema menschenähnliche Maschine, künstliche Menschen usw. schon gestellt  und in vielerlei Projekten und Kunstkontexten behandelt worden sind,  kommen wieder hoch, Homunkulus, Frankenstein, Welt am Draht, 2001: Odyssee im Weltraum, Matrix, Her, Klara und die Sonne usw.  Die faszinierenden Science-Fiction-Visionen, die das Thema KI beflügelt,  sind wieder da und zwar nicht als Phantasiegebilde oder theoretische Konstrukte, sondern handfest, körpernah und für jeden erlebbar.

Auch wenn man die drei Louisas vielleicht heute noch eher spielerisch erlebt und nicht als unmittelbare Bedrohung – die  Diskussion über ontologische Identitätsfragen , über rechtliche und ethische Aspekte von KI und über die Frage der Beherrschbarkeit der KI-Entwicklungen ist angesichts der Begegnung mit den Louisas unvermeidlich. Louisa 0 will diese Fragen als Künstlerin stellen. Sie will provozieren.

Die meisten KI/ML-Experten und -Entwickler sind sich heute noch einig, dass die großen Errungenschaften  der KI auf die „schwache KI“ , d. h. auf die Lösung spezieller Einzelprobleme, begrenzt sind und auf absehbare Zeit darauf begrenzt bleiben werden. Es stellt sich aber die Frage, warum diese vielen Spezialbereiche langfristig nicht zusammenwachsen oder zusammengefügt werden können, um sich auf diese Weise schrittweise einer „starken KI“ (einer umfassenden, nicht mehr auf Spezialaufgaben begrenzten KI) zu nähern. Und die Phantasie kommt an Grenzen, wenn man sich vorstellt, dass die ungeheuren Errungenschaften  der Neurologie und der Molekularbiologie (Genschere) in fernerer(?) Zukunft mit den  KI-Entwicklungen der nächsten 50 Jahre kombiniert werden könnten...  Solche Phantasien überlassen wir gern den Transhumanisten.

Zurück zu Louisa 1, 2 und 3. Welche zentralen Fragen stellen uns die drei künstlichen Menschen? Sind es „nur“ die Fragen nach der Identität solcher Systeme? Ganz offensichtlich  verfügen die drei Louisas nicht über Emotionalität und Empathie, aber sie lösen Emotionen bei ihren menschlichen Gesprächspartnern aus, z.B. wenn sie beleidigend agieren. Und darüber hinaus: Repräsentieren die drei Kunstobjekte nicht auch viel mehr? Leisten sie nicht auch einen Beitrag zu den  großen Fragen, die wir uns im Zusammenhang mit den weltweiten  KI-Entwicklungen  stellen müssen?  Es sind zum Beispiel  Fragen nach der Erklärbarkeit und Kontrolle der KI-basierten Entscheidungen. Die drei Louisas treffen keine für uns wichtigen Entscheidungen, aber wir müssen die Fragen beantworten, wie wir die Kontrolle behalten, wenn KI-Algorithmen lebenswichtige Entscheidungen treffen, etwa im juristischen Bereich , in der medizinischen Diagnostik  oder auch „nur“ bei wirtschaftlichen  Vorgängen.

Außer durch die Konfrontation mit der Maschinen- und Algorithmen-Ethik stellen uns die drei Louisas – im Land der Technologieskeptiker - auch die Frage: Wo stehen wir eigentlich (in Deutschland) mit der KI, und wie gehen wir damit um? Und wie machen wir weiter? Spielen wir überhaupt eine Rolle in der internationalen Entwicklung? Gestalten wir mit? Oder laufen wir nur hinterher?

Das  visionäre und gleichermaßen provokative Louisa-Projekt zeigt uns , dass Deutschland - außer durch seine Verbindung aus klassischem Ingenieurwissen, theoretischer Fundierung und hoher KI-Forschungskompetenz –  einen wichtigen künstlerischen Beitrag leisten kann, mit angewandter KI die menschliche Identitätsfrage zu erhellen und die Lebensqualität der Menschen zu bereichern.


Corona-Modellrechnungen und ihre Grenzen

Für die politischen Maßnahmen zur Corona-Eindämmung spielen seit Beginn der Pandemie die Empfehlungen insbesondere der virologischen und epidemiologischen Experten eine wesentliche Rolle. Dabei werden zur Beschreibung und zur Prognose der Ausbreitung der Pandemie oft auch mathematische Modelle benutzt. Die Ergebnisse solcher  Modelle werden von den Modellierern  gern auch in den bekannten TV-Talkshows präsentiert.  Die mit den Modellen errechneten Prognosen haben sich nun aber in vielen Fällen als nicht realistisch erwiesen. Was ist da los? Warum werden die Öffentlichkeit, die Politik und gerade auch die Experten von den tatsächlichen Entwicklungen immer wieder überrascht? Warum gelingt es nicht, zum Beispiel die Inzidenzen  einigermaßen präzise vorauszusagen und damit auch die Maßnahmen vorausschauend zu planen? Nun gibt es einerseits mathematisch  ausgereifte,  höchst anspruchsvolle, andererseits aber auch mathematisch wenig durchdachte  Modelle bis hin zu grob vereinfachenden „Modellen“ und Simulationen. Dass die (bei den Moderatoren der Talkshows besonders beliebten) vereinfachenden Modelle  die realen Verhältnisse  nicht adäquat beschreiben, ist ja vielleicht nicht weiter verwunderlich. Aber auch die anspruchsvollen, mathematisch durchdachten Modelle kommen oft an Grenzen. Warum sind realistische Prognosen offensichtlich so schwierig?

Mathematische Modelle, das sind in der Regel Formelsysteme, die mit intelligenten Algorithmen auf schnellen Rechnern ausgewertet werden. Die gesamte Physik wird von mathematischen Theorien und Modellen beherrscht, und das gilt ähnlich auch für alle anderen Natur- und Ingenieurwissenschaften;  zunehmend werden auch wirtschaftliche und gesellschaftliche, medizinische und psychologische Prozesse mathematisch beschrieben und optimiert.

Warum ist die Mathematik in den naturwissenschaftlich- technischen Bereichen so überaus erfolgreich, bei Corona aber so wenig überzeugend? Die öffentlich diskutierten mathematischen Corona-Modelle und Simulationen können Entwicklungen beschreiben und erklären, aber bei den Prognosen versagen sie in vielen Fällen. Um das verständlich zu machen,  gehen wir auf drei Ansätze mathematischer Modellierung an Hand repräsentative Beispiele etwas genauer ein.

1. Nehmen wir die klassische Physik (und die darauf beruhende Technik). Die meisten Vorgänge der klassischen Physik lassen sich mit mathematischen Gleichungen, in der Regel mit Differentialgleichungen, vollständig erfassen. Ein schönes Beispiel sind die Zustände und Vorgänge der Elektrizität und des Magnetismus. Sie lassen sich mit wenigen mathematischen Gleichungen (in diesem Fall partiellen Differentialgleichungen) sehr hoher Abstraktion beschreiben. Diese „Maxwell-Gleichungen“  bilden das zugehörige mathematische Modell. Die Auswertung dieser Gleichungen mit Hilfe geeigneter Algorithmen erlaubt die Beschreibung, Prognose und Optimierung  der elektrischen und magnetischen Phänomene und Prozesse mit hoher Präzision. Die Maxwell-Gleichungen bilden damit auch die theoretische Grundlage für die  gesamte Elektrotechnik. Hier leistet die Mathematik das Maximum dessen, was man von ihr erwarten kann.  Ähnliches gilt für alle Kernbereiche der klassischen und der modernen Physik und für alle ihre technischen Anwendungen. Der Siegeszug der  Technik in den letzten 250 Jahren und die industrielle Revolution sind ganz wesentlich ein Siegeszug der mathematischen Modellbildung.

2. Die Prognosemöglichkeiten kommen aber an Grenzen, wenn es sich bei den Phänomenen, die mit den mathematischen Modellen beschrieben werden, um chaotische Phänomene handelt. Als chaotisch wird ein physikalisches System oder Phänomen  insbesondere dann bezeichnet, wenn es auf kleine (minimale) Änderungen der Bedingungen in der Ausgangssituation (in den Eingabedaten) mit großen (drastischen) Veränderungen im Verhalten, insbesondere im längerfristigen Verhalten, reagiert.  Dafür gibt es eine Fülle von Beispielen, neben sehr einfachen physikalischen Systemen wie dem Doppelpendel auch hochkomplexe Systeme. Das prominenteste Beispiel eines chaotischen Systems, mit dem wir täglich zu tun haben, ist das Wetter.. Auch wenn die ausgeklügelten mathematischen Wettermodelle, die feinkörnige weltweite Wetterdatenmessung und -erfassung, die höchst effizienten Algorithmen und die atemberaubende Rechengeschwindigkeit der Supercomputer heute eine erstaunlich genaue Wetterprognose für die jeweils nächsten Tage ermöglichen – deutlich über 10 Tage hinaus ist eine sichere Wettervorhersage (außer bei ungewöhnlich stabilen Wetterlagen) praktisch nicht möglich.

Dabei entziehen sich das Wetter und viele andere chaotischen Systeme und Phänomene wie das genannte Doppelpendel, Crashphänomene, turbulente Strömungen, Erdbeben, Vulkanausbrüche usw. nicht grundsätzlich einer mathematischen Modellierung. Denn es  handelt sich bei solchen Erscheinungen  nicht um vollständig zufällige, sondern durchaus um deterministische  Ereignisse, bei denen aber eine sichere und längerfristige Vorhersage – insbesondere wegen der hochsensiblen Abhängigkeit von den Ausgangsdaten - nicht möglich ist.

Auch ohne die Corona-Phänomene vollständig verstanden zu haben, kann man nach Einschätzung des Autors heute davon ausgehen, dass chaotische Elemente bei  der Übertragung  der Viren, der Wirkung auf den menschlichen Körper und  der globalen Ausbreitung der Pandemie durchaus eine Rolle spielen.

3. Die Vorhersagemöglichkeiten sind noch weiter eingeschränkt, wenn man es mit individuellem menschlichem Verhalten und mit menschlichen Entscheidungen in kritischen Situationen zu tun hat, wie bei der Corona-Pandemie. Da sind dann oft nur statistische Erfassungen, Beschreibungen und Aussagen möglich. Aber auch solche Phänomene kann man mit mathematischen Modellen zu beschreiben versuchen. Uns sind in den Medien, insbesondere in den TV-Talkshows (Illner, Maischberger, Will; Lanz usw.) die Ergebnisse solcher Modelle immer wieder präsentiert worden, von meist den gleichen, mittlerweile bundesweit bekannten Modellierern. Detailliertere Informationen über den mathematischen Charakter der Modelle hat man in den Medien dabei kaum erhalten – das verhindern schon die (oft ausdrücklich nicht Mathematik-affinen) Moderatorinnen und Moderatoren. Der Autor hat sich mit den „TV-Modellen“ (Priesemann, Brockmann, … usw.) nicht  intensiv auseinander gesetzt, hält sie aber z.T. für durchaus durchdacht und mathematisch anspruchsvoll. Eine fundierte Bewertung der Modelle ist allerdings auch bei genauer Kenntnis der Modell-Mathematik nicht ganz einfach; letztlich werden die Modelle erst durch die Realität bestätigt (oder widerlegt).

Der Autor hat sich aber mit dem  Modellierungsansatz „On COVID-19 Modelling“  von Robert Schaback im Detail beschäftigt. Das Modell  beschreibt die COVID-19-Epidemie mit einem  (gemäß  Robert Schaback vergleichsweise einfachen) System gewöhnlicher Differentialgleichungen. Aus Sicht des Autors ist das Modell sehr sinnvoll und überzeugend, es orientiert sich eng an den jeweils aktuellen, verfügbaren Daten. Bedauerlicherweise ist das Modell in den Talkshows nie präsentiert worden. Das gilt – nach Kenntnis des Autors –auch  für das  ebenfalls sehr überzeugende Modell des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM (Anita Schöbel et al.); dieses Modell  berücksichtigt auch die zeitlichen Verzögerungen zwischen der Corona-Übertragung und dem  Ausbruch der Corona-Symptome.

Alle ernst zu nehmenden Modelliererinnen und Modellierer betonen, dass die Qualität der modellbasierten Vorhersagen sensibel von den jeweils verfügbaren Daten abhängt; deren Verfügbarkeit wird  allerdings durchgängig  als absolut unzureichend bezeichnet:  Generell wird bedauert, dass die Nutzung des im Prinzip vorhandenen Datenmaterials (weltweite und regionale Daten über leichte und schwere Verläufe, in Abhängigkeit vom Alter und den Vorerkrankungen der Betroffenen, Einfluss der Impfungen usw.) für die Einbeziehung in die Modelle  nicht oder kaum möglich war.

Differentialgleichungen modellieren das epidemische  Geschehen eher makroskopisch, also gewissermaßen durch globale Betrachtung der Pandemieausbreitung, vergleichbar mit einer Strömung oder einer Flut. Vom Verhalten der einzelnen Individuen wird dabei abstrahiert.  Daneben werden aber auch fundamental  andere Modellierungsansätze verfolgt. Bei sogenannten „agentenbasierten“ Ansätzen wird z.B. versucht, das Verhalten und die Entscheidungen  der einzelnen Individuen und die Auswirkungen dieser Entscheidungen auf das Gesamtsystem mathematisch zu erfassen. Ob diese Ansätze erfolgversprechender sind als die makroskopischen Ansätze, kann der Autor nicht fundiert beurteilen; er ist eher skeptisch.

Von  Modellierern und Kommentatoren wird gelegentlich argumentiert, dass die politisch veranlassten Lockdown-Maßnahmen und Einschränkungen effektiver gewesen wären, wenn die Politik die Modellprognosen ernster genommen hätte. Das mag im Einzelfall zutreffen. Aber selbst bei  intimer Kenntnis der zugrundeliegenden Mathematik  ist eine objektive Bewertung der unterschiedlichen Modellansätze und Modellprognosen nicht einfach. Die Experten und Modellierer haben sich in vielen Fällen auch nicht einheitlich geäußert, es hat vielmehr – auch in Deutschland – eine problematische Lagerbildung unter den Modellierern gegeben.  Besonders deutlich sind die unterschiedlichen Positionen und fragwürdigen Empfehlungen  der Experten bei den Impfstrategien geworden – mit der Folge einer fatalen Verunsicherung der  Öffentlichkeit.

Schließlich: Dass mathematische Modellierungsmöglichkeiten in Panik- und anderen Extremsituationen und Katastrophen an prinzipielle Grenzen kommen, dafür ist der überaus tragische Verlauf der Loveparade in Duisburg im Jahre 2010 ein erschütterndes Beispiel.


Prozente, Prozente! Oder: Prozente lügen nicht

Prozente? Das kann doch jeder!

  • 10% Rabatt auf 120 Euro sind 12 Euro, also rabattierter Betrag 108 Euro
  • 19% MWSt auf 50 Euro ergeben 59,50 Euro Brutto
  • „Wir schenken Ihnen die Mehrwertsteuer!“ Heißt das 9,50 Euro Abzug vom Kaufpreis – oder 19% Abzug?

Da wird’s schon enger. Wenn etwas x = 59,50 Euro kostet und um 19% reduziert wird, errechnet sich der reduzierte Preis als x – x*0,19 = x*(1-0,19) = x*0,81 = 48,20 Euro. Um auf den ursprünglichen Nettopreis zu kommen, muss man x durch (1+0,19) teilen. Also 59,5/1,19 = 50.

Dieser Unterschied von „rauf“ und „runter“ macht schon  vielen Schwierigkeiten. In der Schule hatte die Prozentrechnung dafür noch gereicht. Es gibt – gerade in Zeiten von Corona – Unmengen von %-Aussagen. Aber was bedeuten sie?

  1. Rauf und runter

Was passiert, wenn wir in Folge abwechselnd 20% auf einen Betrag aufschlagen und dann wieder 20% abziehen? Also, beginnend etwa bei 100 Euro:

  • Plus 20% ergibt 120 Euro
  • Abzüglich 20% ergibt 120 – 24 = 96 Euro
  • Plus 20% ergibt 96 + 20%*96 = 96 + 19,20 = 115,20 Euro
  • Abzüglich 20%, ergibt 92,16 Euro,

Mathematisch gesehen wird bei „Plus“ der aktuelle Betrag mit (1 + 0,2) multipliziert, beim Abzug mit (1 – 0,2). Bei jedem „rauf und runter“ wird also mit (1+0,2)*(1-0,2) = (1-0,04) = 0,96 multipliziert. Das heißt zum einen, 20% rauf und 20% runter ergibt nicht den Ausgangswert, wie man meinen könnte, sondern einen geringeren Wert. Zum anderen: wenn man das wiederholt macht, wird der Wert jedes Mal um den Faktor 0,96 kleiner. Das ist eine exponentielle Folge, die auf Dauer gegen Null geht.

Wenn man sich fragt, wann der Wert sich auf die Hälfte reduziert hat, muss man schon mit Logarithmen arbeiten, oder aber die Folge „simulieren“. Ergebnis: nach 17 Schritten.

  1. Exponentielles Wachstum

Mit Prozenten kann man exponentielles Wachstum, oder dessen Gegenteil, erzeugen. Das ist jedem klar, der mal sein Sparguthaben mit Zinseszins gerechnet hat. Kommen auf einen Betrag von, sagen wir, 100 Euro  -2% Zinsen –  d.h. 2% „Strafzinsen“ -  so ist das Resultat 100 – 0,02*100 = 100*(1-0,02) = 100*0,98. Kommen darauf für einen weiteren Zeitraum ebenfalls 2% Strafzinsen, ergibt das 100*0,98*0,98 = 100*0,98² usw.

Wir haben also exponentielles Wachstum, wenn ein Wert „prozentual“ zunimmt, also mit jedem Zeitschritt K zu K‘ = K*q wird, wobei der Prozentsatz p% in q = 1+p/100 verrechnet wird. Nach t Zeitperioden ist ein Anfangswert K0 auf Kt = K0*q t   gestiegen – oder gefallen, je nachdem ob q > 1 oder q < 1 ist.

Damit haben wir auch eine einfache Erklärung für den Begriff „exponentiell“: Der Wachstumsfaktor für Kt berechnet sich mit t als Exponent.  Bei einem „linearen“ Wachstum hätten wir Kt = K0 + a*t, d.h. t als Faktor der Steigerungsrate (wenn a > 0).

In seinem Blogbeitrag „Exponentielles Wachstum“ (Link) erklärt Ulrich Trottenberg die Bedeutung von Exponentiellem Wachstum im Kontext der Corona Fallzahlen.

  1. Das Prozente-Rauf-und-Runter Spiel

Hier das Rauf-und-Runter als Spiel für zwei Personen (Nullsummenspiel). Zwei Personen X und Y haben je 100 Euro. Sie verabreden folgendes „Spiel“: Ein Zug besteht aus zwei Aktionen

  1. X gibt 20% seines Vermögens an Y
  2. Y gibt 20% seines Vermögens an X

Was passiert? Nach 5 Zügen, nach 10 Zügen? Nach unendlich vielen Zügen? Wer gewinnt und wieviel, in % des Startguthabens?

Hier zunächst die Antworten. Die Begründung findet sich als Anhang am Schluss.

  1. Nach 5 Zügen hat X 109,92 Euro, Y hat 90,08 Euro
  2. Nach 10 Zügen steht es: 110,98 Euro zu 89,02 Euro
  3. Nach unendlich vielen Zügen hat X 111,11 Euro, Y hat 88,89 Euro
  4. X gewinnt
  5. Sein Gewinn ist 11,11 %, der Verlust von Y ist 11,11 %, was klar ist wegen des Nullsummen-Spiels

 

  1. Kleine Zahlen – Große Prozente

Der CDU-Vorstand wählte vor kurzem den CDU Kanzlerkandidaten, in einer Stichwahl zwischen A. Laschet und M. Söder. Die Presse berichtete, dass 77,5 % der Stimmen für Laschet abgegeben wurden. Klingt gut, nach ordentlichen Prozenten. Aber was steckt dahinter?

Tatsächlich bestand der Vorstand aus 46 Mitgliedern, von denen sich 6 enthalten haben und 9 für Söder gestimmt haben. D.h. auf Laschet entfielen 31 Stimmen!

Die 77,5% berücksichtigen nur die Nicht-Enthaltungen. Alternativ wurden 67,4 % errechnet bei Berücksichtigung des gesamten Vorstands. Wir haben hier also zwei Prozentzahlen für das gleiche Ergebnis.

Schlimmer noch: was sollen 77,5% bedeuten, wenn es nur 46 Abstimmende gegeben hat. In Worten wäre eine Bedeutung: „Von je 100 Vorstandsmitgliedern stimmten 77,5 – nein, 67,4 - für Herrn Laschet. Nun gab es aber keine 100 oder mehr Vorstandsmitglieder, sondern nur 46.

Ein Fehler, der sehr häufig gemacht wird, unreflektiert: Kleine Zahlen in Prozente (pro Hundert) umzurechnen. Auch in wissenschaftlichen Arbeiten.

Wenn Sie lesen, dass bei 75% der Probanden ein neues Medikament wirksam war, dann klingt das nach viel. 50% klingt schon nicht mehr so gut. Was, wenn die Wirksamkeitsaussage sich dabei aber auf nur 9 Fälle bezieht?  Bei kleinen Zahlen sind außerdem Zufallsschwankungen üblich. Eine Abweichung um 2 Probanden macht das Ergebnis dann schon zu nur noch 58%. Die %-Zahlen vernebeln hier die Realität.

  1. Große Zahlen – kleine Prozente

Es gibt auch den umgekehrten Effekt.

In den täglichen Corona-Statistiken wird u.a. die Inzidenz angegeben, also die Anzahl Neuinfektionen über die vergangenen 7 Tage je 100.000 Bevölkerung 1). Damit hat man einen guten Vergleichswert, um z.B. die Entwicklung in den verschiedenen Ländern zu vergleichen.

Interessant wären natürlich Feinanalysen, um Bereiche mit besonders hohen oder niedrigen Inzidenzwerten zu erkennen. Die Stadt Köln hat diese Feinanalyse für sämtliche Ortsteile / Veedel veröffentlicht.

Der Bezirk Chorweiler hatte am 26.4. einen Inzidenzwert von 520. Die Ortsteile Hahnwald und Fühlingen 0 und Esch/Auweiler iregndwas zwischen 200 und 300 (Kölner Stadtanzeiger 29.4.2021). Das klingt nach viel für Chorweiler und Esch/Auweiler und wenig für Hahnwald und Fühlingen – weswegen es Chorweiler und Hahnwald auch in die TV-Nachrichten gebracht haben.

Nach Definition des Inzidenzwerts hatten also: Chorweiler 520 Neuinfektion je 100.000 Einwohner, Esch/Auweiler ca. 250, Hahnwald und Fühlingen 0 je 100.000 Einwohner. Allerding, keiner dieser Ortsteile hat nur annähernd 100.000 Einwohner.

Hier eine aktuelle Tabelle mit Zahlen der Stadt Köln mit Daten vom 28.4.2021, die sich insbesondere für die kleinen Ortsteile (Fühlingen, Hahnwald) nach zwei Tagen teilweise drastisch geändert haben:

Ortsteil Einwohner Inzidenz-Zahl
Chorweiler 12.900 543,4
Esch/Auweiler 7.000 168,1
Fühlingen 2.100   47,8
Hahnwald 2.066 145,2
Roggendorf/ Thenhofen 4.500 683,0

 

Die Inzidenzzahlen sollen vergleichbar machen - ok. Bei der Ortsteil-Analyse, oder gar bei Analyse  nach anderen Kriterien (Sozialstatus, Einkommen, Bildungsstand), ergeben sich einige verfälschende Eindrücke oder Scheingenauigkeiten. Ähnlich wie bei den Prozenten der Kanzlerkandidaten-Wahl (bezogen auf 100) ist die Grundgesamtheit hier eine viel kleinere Zahl als die Bezugsgröße 100.000 (Die Inzidenzzahlen sind also Angaben in Tausenstel Prozent oder Milliprozent).

  1. Die Inzidenzzahlen werden oft mit ein, zwei Stellen hinter dem Komma angegeben, was eine Scheingenauigkeit suggeriert.
  2. Hohe Inzidenz auf kleiner Basisgesamtheit suggeriert hohe, teilweise sehr hohe Fallzahlen von Neuinfektionen. Da die Zahl der Basisgesamtheit in der Regel nicht angegeben wird, werden die Inzidenzahlen intuitiv als Maßstab empfunden (Hotspot). Bezogen auf die Einwohnerzahl hat z.B. Roggendorf/Tenhofen mit Inzidenz 683 insgesamt 31 Neuinfektionen über die 7-Tage-Zeitspanne, Chorweiler mit geringerer Inzidenz mehr als das Doppelte (70) an Neuinfektionen, also im Schnitt etwa 10 neue Fälle pro Tag.
  3. Niedrige Inzidenz bei kleinen Basiszahlen kann ebenfalls leicht in die Irre führen. Wenn Hahnwald mit Inzidenz 145 vermerkt ist, bedeutet das 3 neue Fälle in 7 Tagen. Die kleinen Zahlen sind sensibel gegen „Störungen“: Kommt ein Fall hinzu, steigt die Inzidenz auf 210 und Hahnwald wird Hotspot. Fällt ein Fall heraus, sinkt sie auf 97 mit den entsprechenden Konsequenzen. Der Zustand Inzidenz Null ist besonders „instabil“. Eine einzige Neuinfektion treibt den Wert bereits an die 50er-Marke (48,4).
  4. Rangfolge-Darstellungen nach Inzidenzwert suggerieren eine Vergleichbarkeit, die statistisch unsinnig ist, aber immer gerne angewendet wird. Sinnvoller ist eine Rangfolge des Infektionsgeschehens nach Prozent der Bevölkerung. Die Rangfolge ist zwar in beiden Fällen gleich. Für die Prozentzahlen spricht aber, dass Basiszahlen alle deutlich über 100 liegen (aber nie über 100.000), daher ist ein Vergleich unkritisch und aussagekräftiger und die deutlich kleineren %-Zahlen liegen innerhalb des üblichen „normierten“ Wahrnehmungsbereichs von 0 bis 100%.
Ortsteil Einwohner Inzidenz-Zahl Prozent Rang
Chorweiler 12.900 543,4 0,54 % 2
Esch/Auweiler 7.000 168,1 0,19 % 3
Fühlingen 2.100   47,8 0,05 % 5
Hahnwald 2.066 145,2 0,15 % 4
Roggendorf/ Thenhofen 4.500 683,0 0,69 % 1

 

  1. Andere Zahlen, andere Prozente

Die Inzidenzkarte der Stadt Köln zeigt im Drill-Down erfreulicherweise auch die Basiszahlen und mehr für die Ortsteile an, so dass man sich selbst ein Bild „errechnen“ kann.

Üblicherweise werden die Neuinfektionsstatistiken und Inzidenzzahlen aber ohne Bezug zu den entsprechenden täglichen Testzahlen kommuniziert. Stattdessen wird gelegentlich der Verdacht diskutiert (not least by Mr. Trump), dass die „schlechte Entwicklung der Infektionszahlen“ schon durch eine verbesserte Testdichte und Test-Willigkeit zu erklären sei, also ein statistisches Artefakt. Daher wären mitlaufende Zahlen für Test-Anzahl oder Testdichte (Anzahl Tests pro Bevölkerung in %) eine wichtige Information.

In einem Youtube-Video  kritisiert ein Mathematik-Student die Inzidenz-Berechnung als mathematisch falsch. Statt auf 100.000 Bevölkerung müsse man die Inzidenz auf die Anzahl der Tests in einer Bevölkerungsgruppe beziehen. (Der Link wurde inzwischen gelöscht, vermutlich aufgrund kritischer Gegenkommentare. S. z.B. hier.)

Genauer betrachtet, handelt es sich hier jedoch nicht um einen Fehler, sondern lediglich um zwei unterschiedliche Kennzahlen, deren Bedeutung entsprechend differenziert werden muss.

Die Inzidenzzahl bezieht sich auf die Gesamtheit der betrachteten Bevölkerungsgruppe. Als relative Häufigkeit, oder idealisiert als Wahrscheinlichkeit, haben wir hier ein Maß für die apriori-Wahrscheinlichkeit P(+) = Anzahl (+) / Anzahl (Bevölkerung). Die Alternative ist im weitesten Sinne eine Bayes’sche Interpretation der Positiv-Wahrscheinlichkeit, allerdings trivial reduziert zu P(+|Test) = Anzahl (+) / Anzahl (Test), da die positiv Getesteten schlicht eine Teilmenge der Getesteten sind, die wiederum ein Teilmenge der betrachteten Bevölkerung sind.

Wir haben es hier also nicht mit einem Fehler zu tun, sondern mit einer anderen Kenngröße, und man kann darüber diskutieren, welche davon sinnvoller ist. Hier ein Denkansatz dazu:

  • Die „Inzidenz“ bezogen auf die Tests kann a) einen Teil der täglichen Schwankungen erklären und hat b) als Bezugsgröße einen realen Wert statt 100.000, erfüllt damit den Kritikpunkt in 4 besser
  • Die Inzidenz bezogen auf 100.000 einer Bevölkerungsgruppe (auch wenn die real viel kleiner ist) gibt einen Eindruck vom noch möglichen Potenzial an Neuinfektionen und dem Einfluss von Steuerungsmaßnahmen.

Make your choice! I take both.

 

  1. Fälle, Relative Häufigkeiten, Wahrscheinlichkeiten - Prozente, Prozente!

Prozente sind nicht gleich Prozente. Bei der Kanzlerkandidaten-Wahl (s. 3.) entfielen 77,5% der abgegebenen Stimmen auf A.L. Andererseits erhielt A.L. 67,4% der Wahlberechtigten (CDU Präsidium). Zwei unterschiedliche Prozent-Ergebnisse für den gleichen Vorgang. In diesem Fall ist der Unterschied durch die Bezugsgröße (Grundgesamtheit) erklärt und meist geht diese auch in einem sprachlich verfassten Text zur Prozentzahl mit erwähnt.

Allerdings - die sprachliche Ergänzung ist oft nicht eindeutig. Was sind „die abgegebenen Stimmen“, welche Grundgesamtheit bezeichnet dieser Begriff? Zählen die Enthaltungen ebenfalls zu den abgegebenen Stimmen? Gut, wenn man vorher eine Definition gegeben hat.

Aber nicht immer geht das so einfach.

In Zusammenhang mit der Corona-Pandemie werden üblicherweise Todeszahlen „durch oder im Zusammenhang mit Corona“ als Absolutzahlen (Fälle) angegeben. Gelegentlich werden auch Prozentzahlen angegeben, typischerweise nach wissenschaftlichen Festlegungen aus der Epidemiologie. Was ebenfalls zu unterschiedlichen Prozentwerten für das gleiche Geschehen führt. So bekommt man auf die Frage „Wie groß ist (oder war, bis März 2021) die Wahrscheinlichkeit „durch oder im Zusammenhang mit Corona“ zu sterben, unterschiedliche Antworten, selbst bei gleicher Datenlage.

Um das zu illustrieren, gehen wir von folgenden Zahlen aus, die man beim Statistischen Bundesamt bzw. den Meldeämtern beziehen kann:

Rohdaten normiert auf 12 Monate ab 03/20
Population DE N 83.200.000
Gemeldete Todesfälle 2020 gesamt T 982.000
Corona Infektionen gesamt 03/20 – 04/21 (RKI) C 2.754.000
 Corona Todesfälle 03/20 –  04/20 (RKI) D 72.800

Anm.: Die Daten sind auf 12 Monate zurückgerechnet, teilweise ausgehend von Zahlen für 03/20 bis 04/20. Die Symbole N, T, C, D stehen im Folgenden für die Fallzahlen, gelegentlich aber auch als Abkürzung für die Mengen-Bezeichnungen in der linken Spalte.

Die Tabelle zeigt die absoluten Häufigkeiten in „Fällen“. Relative Häufigkeiten werden in Bezug auf eine andere, umfassendere Menge definiert und meist in % angegeben. Die Wahrscheinlichkeit eines Zufalls-Ereignisses wird dagegen in Zahlen von 0,0 bis 1,0 dargestellt – die aber gelegentlich durch Multiplikation mit 100 auch in Prozentangaben umgerechnet wird. Oft wird die Wahrscheinlichkeit eines Ereignisses aus relativen Häufigkeiten empirischen Daten „gesetzt“.

Wenn also gefragt wird: „Wie groß ist die Wahrscheinlichkeit an Corona zu sterben?“ gibt es nach der obigen Tabelle schon mal drei verschiedene Antworten:

  1. Wahrscheinlichkeit ein Corona-Todesfall zu sein: 0,09 %
  2.  Wahrscheinlichkeit als Corona-Patient zu sterben: 2,64 %
  3.  Wahrscheinlichkeit, dass ein Todesfall auf Corona-Erkrankung zurückzuführen ist: 7,41 %

 

Es wird deutlich, dass diese Aussagen sprachlich und in der Bedeutung nur schwer auseinander zu halten und (in den Medien) zu vermitteln sind. Dennoch bedeuten sie Unterschiedliches und haben daher unterschiedliche Werte.

Für Interessierte hier kurz die Erklärung der Ergebnisse. (Die methodische Anmerkung am Schluss erklärt, warum wir hier vereinfachend von Wahrscheinlichkeiten W sprechen.)

Antwort a) ist einfach zu verstehen: W(D) = D/N = 0,0009. D.h.  0,09 % der Bevölkerung sind als Corona-Todesfälle ausgewiesen. Wie sieht es mit b) und c) aus?

Mit der sog. Bayes’schen Betrachtungsweise sind die Unterschiede leicht als sog. „Bedingte Wahrscheinlichkeiten“ zu beschreiben. Das „bedingt“ stellt den Bezug zu einer Menge her, die selbst wiederum Teilmenge der Grundgesamtheit ist. Bei a) ist die „Bezugsmenge“ die Grundgesamtheit selbst, also die Bevölkerung N. Schauen wir mal auf die Teilmengenverhältnisse gemäß deren Bedeutung: T, C, D stehen für Teilmengen der Gesamtbevölkerung. D ist Teilmenge von T und von C, also sind T^D und C^D dasselbe, nämlich D. T und C sind i.a. nicht Teilmengen voneinander. (Das ^ steht für den Mengendurchschnitt).

Antwort b) bedeutet  W(Todesfall, gegeben Corona-Erkrankung) = W(Todesfall und Corona-Erkrankung) / W(Corona-Erkrankung), als Formel: W(T|C) = W(T^C)/W(C).

Setzen wir für die Wahrscheinlichkeiten rechts wieder die relativen Häufigkeiten (in Bezug auf N) ein, dann bekommen wir auf der rechten Seite: (D/N)/(C/N) = D/C = 72.800/2.754.000 = 0,0264 Oder: W(T|C) ist 2,64 % , die Wahrscheinlichkeit zu sterben, wenn man Corona-erkrankt ist.

Antwort c) sagt etwas ganz anderes aus: Die Wahrscheinlichkeit, dass eine Person Corona-erkrankt war, die  gestorben ist. Als bedingte Wahrscheinlichkeit ausgedrückt: W(C|T) = W(C^T)/W(T). Man sieht hier die Änderung der „Bezugsgröße“ im Nenner. Da C^T und T^C die gleiche Schnittmenge bezeichnen, liegt der Unterschied im Nenner, also  W(T), statt W(C) bei b).

Setzen wir für die Wahrscheinlichkeiten rechts wieder die relativen Häufigkeiten (in Bezug auf N) ein, dann bekommen wir auf der rechten Seite: (D/N)/(T/N) = D/T = 72.800/982.000 = 0,0741 Oder: W(C|T) ist 7,41% , die Wahrscheinlichkeit, dass eine Person an Corona erkrankt war, wenn sie gestorben ist.

Die Formulierung mit „wenn“ ist übrigens auch eine gute Möglichkeit zu überprüfen welche Wahrscheinlichkeit man meint: Wahrscheinlichkeit dafür, dass A, wenn B.

Methodische Anmerkung:

Relative Häufigkeiten sind immer in Bezug zu einer Grundmenge zu sehen. So ist nach der obigen Tabelle die relative Häufigkeit der Corona-Todesfälle (D)   D/N = 0,0009 (0,09 %), bezogen auf die Gesamtbevölkerung (N), aber D/C = 0,0264 (2,64 %) bezogen auf die Corona-Erkrankungen.

Mit den entsprechenden Wahrscheinlichkeitsaussagen ist das allerdings so eine Sache. Formal zwar nicht; denn die Grundlagen der W-Rechnung gehen von einer definierten Ergebnismenge (Ergebnisse eines Zufalls-Prozesses) aus, und Wahrscheinlichkeiten sind für Teilmengen davon, „Ereignisse“ genannt, definiert. Der Bezug zur Grundgesamtheit ist also prinzipiell durch die Ergebnismenge implizit vorgegeben, wird aber oft bei Interpretationen „vergessen“.

Wenn man die Formeln für b) und c) in Beziehung setzt:

W(T|C) = W(T^C)/W(C) = W(T^C)*W(T)/(W(C)*W(T)) = W(C|T)*W(T)/W(C)

bekommt man die berühmte Bayes’sche Formel für den Zusammenhang von W(T|C) und deren Umkehrung W(C|T).

 

Anhang: Das Rauf-und-Runter-Spiel

Wir bezeichnen die Guthaben von X bzw. Y nach dem n-ten Zug als xn  und yn. Die Werte nach jeweils der 1. Aktion des n-ten Zuges bezeichnen wir mit x’n und y’n. Das Spiel beginnt mit x0 = y0 = 100 Euro.

Für den n-ten Zug berechnen sich die x- und y-Werte so:

Zug n : Aktion 1

y’n  = yn-1 + 0,2xn-1  und  x’n = xn-1 -  0,2xn-1

Zug n : Aktion 2

                        yn  = y‘n -  0,2y’n  und   xn  = x’n + 0,2y’n

Dieser kleine Algorithmus lässt sich in der Tabellenkalkulation leicht darstellen:

Prozente 20%
x y
n=0 100,00 100,00
n=1 80,00 120,00
104,00 96,00
n=2 83,20 116,80
106,56 93,44
n=3 85,25 114,75
108,20 91,80
n=4 86,56 113,44
109,25 90,75
n=5 87,40 112,60
109,92 90,08
n=6 87,93 112,07
110,35 89,65
n=7 88,28 111,72
110,62 89,38
n=8 88,50 111,50
110,80 89,20
n=9 88,64 111,36
110,91 89,09
n=10 88,73 111,27
110,98 89,02
n unendlich 111,111111 88,8888889

 

Die Werte nach unendlich vielen Zügen ergeben sich, indem man die Iteration „zugweise“ formuliert, also die x‘ und y‘ eliminiert:

Zug n:

yn  = 0,8yn-1 +  0,16xn-1 und   xn  = 0,2yn-1 +  0,84xn-1

Die Konvergenzbedingung - also Werte von x und y, bei denen sich nichts mehr ändert - ist damit einfach das Gleichungssystem

y = 0,8y + 0,16x    und  x = 0,2y + 0,84x

deren Auflösung  für  x = 5/9 * 200 = 111,11 Euro (Gewinner ist X!) und für y = 4/9 *200 = 88,89 Euro ergibt.

 

 


Six not so easy pieces for AI

In einer Artikelserie für die weit verbreitete Zeitungsbeilage PRISMA hatte Ulrich vor einiger Zeit schon versucht, KI und die Konsequenzen allgemein verständlich darzustellen. Die Serie beginnt mit dem Beitrag "Künstliche Intelligenz I: Von Menschen für Menschen geschaffen".

Die Frage, worin die Intelligenz von KI-Systemen besteht, ob KI-Systeme selbstständige Intelligenz entwickeln können, oder man ihnen intellektuelle Fähigkeiten zusprechen kann, wird zurzeit heftiger denn je diskutiert – nicht nur in Kreisen der „Techniker“ sondern auch in den Gesellschafts- und Cognitiv-Wissenschaften.

Beginnen wir mit einigen aktuellen  Zitaten zu Intelligenz und Künstlicher Intelligenz –  drei plausible aus Millionen von möglichen Zitaten.


„Allgemeine Künstliche Intelligenz: AKI – ein System, das alle intellektuellen Fähigkeiten eines Menschen in sich vereint.“ ([KI, S. 39]

„Wenn Maschinen oder Computer kognitive oder geistige Fähigkeiten zeigen, die denen des Menschen ähneln, so nennt man das Künstliche Intelligenz. Bei diesen Fähigkeiten kann es sich z.B. um Lernen aus Erfahrung handeln oder um die Lösung von Problemen.“ [KI]

In einem Fernseh-Interview [MG] definiert Markus Gabriel erstmalig "Intelligenz" als die Fähigkeit, für ein Problem eine Lösung zu finden. Er ergänzt: das setzt voraus dass man überhaupt ein Problem hat (oder erkennt). Und zu KI, recht restriktiv: in der KI sind es die Menschen, die die Probleme definieren, nicht die KI-Systeme / Algorithmen. Folglich sind KI-Systeme - trotz des "I" im Namen - nicht intelligent.


Es geht offenbar nicht nur darum, eine Aufgabe zu bewältigen, sondern um die Fähigkeit der Lösungsfindung.

Die intellektuelle „Intelligenz“ eines KI Systems besteht  nicht (so sehr) in der Fähigkeit ein Problem zu lösen, sondern in der Fähigkeit, Lösungen für ein Problem zu finden. Das bedeutet im konkreten Fall, die Fähigkeit, die Lösung einer Aufgabe zu erlernen  – weniger, sie nur auf eine Aufgabe anzuwenden. Ein Algorithmus, der z.B. den größten gemeinsamen Teiler (ggT)  von zwei Zahlen bestimmt, löst diese Aufgabe. Er kann das. Ein Algorithmus, der lernt, wie der ggT. von zwei Zahlen bestimmt wird, hat eine ganz andere „intellektuelle“ Aufgabe. Menschenskinder lernen das spätestens als Schüler früher oder später.

Offenbar ist Erfahrung eine wesentliche Voraussetzung für die Lösungsfindung. Erfahrung kann vermittelt werden, durch Lehrer:innen, durch Beispiele (Daten) oder durch eigene, wiederholte Beobachtungen entstehen.

Sofern das System, das lernt, ein menschliches Artefakt ist (Programm, Computer, Robot) spricht man von Machine Learning -  für Lebewesen verwendet man eher den Begriff „Animal Learning and Cognition“, aber das ist ein anderes Thema.

Ohne Zweifel ist heute die Leistungsfähigkeit spezieller KI Methoden, insbesondere des Maschinellen Lernens (ML), spezialisiert für bestimmte Aufgaben der Erkennung, Analyse und Klassifizierung den vergleichbaren menschlichen Fähigkeiten weit überlegen, dank der Fortschritte in der Computer- und Algorithmen-Entwicklung. Aber das haben Technologie-Fortschritte so an sich. Einen schon atemberaubenden Einblick in die Hochleistungssysteme und algorithmischen Techniken von ML Verfahren, insbesondere mit Tiefen Neuronalen Netzen, findet man in dem kürzlich erschienen Buch [KI].

Die Lernfähigkeit als (quasi-)intellektuelle Fähigkeit künstlicher Systeme zeichnet also Systeme aus, die sich vom Zustand des Nicht-Lösen-Könnens in den des Lösen-Könnens entwickeln können. Klingt kompliziert, ist es auch – wie soll das gehen? In der KI Praxis hat man dafür, dank der enormen Rechenleistung von Spezial-Computern und der Intelligenz von ML-Wissenschaftlern, Verfahren entwickelt und verfeinert, die diese Lernfähigkeit in Form von hochdimensionalen Parameter-Anpassungen gewinnen.

Das heißt aber auch, dass hier nicht ein „KI-System“ diese Lernfähigkeit entwickelt, sondern dass diese zunächst einmal durch enorme menschliche intellektuelle Leistungen – von Mathematikern, Informatikern, SW-Ingenieuren usw. – in Algorithmen oder technischen Systemen vorbereitet wird.

Man kann zwar  „höhere“ KI-Systeme mit ML-Methoden ausstatten, die sich die algorithmischen Komponenten nach bestimmten Zielvorgaben selbst zusammenstellen, etwa der, das Lernen für eine bestimmte Problemklasse zu optimieren oder Erklärungen für bestimmte Ergebnisse zu liefern. Insofern kann man davon sprechen, dass sich die sogenannte Schwache KI (z.B. Machine Learning, Robot-Steuerung) durch Vielseitigkeit und Lernleistung in Richtung Starker KI (intellektuelle Leistungen) entwickelt. Aber auch das beruht primär auf menschlicher Intelligenz, sowohl was die Meta-Problemstellung betrifft als auch die algorithmischen Verfahren.  Das KI-System kann dabei das Ausprobieren verschiedener Strukturen und Anpassen von sog. Hyperparametern automatisieren.

(Anmerkung: Das sieht nach einem „infiniten Regress“ Problem für die Allgemeine Künstliche Intelligenz aus. Was fehlt, ist ein Prinzip der Entwicklung. Etwa ein Evolutionsprinzip (Genetische Variation, Selektion), das ja offensichtlich erfolgreich zu Animal Learning and Cognition und insbesondere zur  menschlichen Intelligenz als Maß aller Dinge geführt hat.)

In der Blog-Serie „Sechs nicht so einfache Aufgaben für KI“  haben wir der KI ein paar einfachste, anspruchslose Aufgaben vorgelegt, die jedes Kind zu bewältigen lernt. Sie sind der Verstehbarkeit halber aus der Mathematik gewählt. Also etwa das Zählen, oder gerade und ungerade Zahlen zu unterscheiden. Wir wollten daran sehen, wie es um die Lernfähigkeit bestellt ist, was man als Entwickler dazu beitragen muss, welche Qualitäten des Lernens man dabei entdecken kann und, was KI daraus lernen kann, wie Kinder diese Aufgaben – vermutlich – zu lösen lernen.

Die Blog-Serie ist auf Medium für Beck et al. GmbH, München, auf Deutsch veröffentlicht. Den Einstieg findet man in dem kurzen Einführungsblog: Sechs nicht so einfache Aufgaben für KI, oder über die Webseite von https://becketal.com unter #our_blog. Im Laufe der Zeit (2019) war die Serie ordentlich angewachsen, weshalb der Einführungsblog-Beitrag am Ende auch ein Verzeichnis aller Beiträge der Serie enthält, in der empfohlenen Lesereihenfolge und direkt bzw. untereinander verlinkt.

Noch ein Hinweis: Die Beiträge sind in Form so genannter Jupyter Notebooks (für Python) entstanden. D.h. der erzählende Text wird unterstützt durch kurze Python-basierte Code-Blöcke (unter Verwendung einschlägiger Packages wie keras / Tensorflow für Neuronale-Netze-Modelle). Mit denen können die beschriebenen Ideen bei Interesse nachgebildet werden.

Zum Abschluss noch ein älteres Zitat, nicht weniger bedeutend als die aktuellen:


"I propose to consider the question, "'Can machines think?' This should begin with definitions of the meaning of the terms 'machine' and 'think'. The definition might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous..." [AT]


[KI] G. Paaß, D. Hecker: Künstliche Intelligenz Springer 2021

[MG] Markus Gabriel: Sendung aspekte vom 12.3.2021

[AT] Alan Turing: Computing Machinery and Intelligence, Oxford University Press, 1950

 


Stellungnahme zum AstraZeneca-Impfstopp aus statistischer Sicht

Das Paul-Ehrlich-Institut begründet den AstraZeneca-Impfstopp mit der Notwendigkeit, zu prüfen, ob zwischen den beobachteten Komplikationen und der Impfung ein kausaler Zusammenhang besteht. Aus statistischer Sicht ist der AstraZeneca-Impfstopp aber in jedem Fall die falsche Entscheidung. Auf der Basis der derzeit öffentlich bekannten Zahlen zu den AstraZeneca-Komplikationen ist das durch die Impfung entstehende Komplikations-Risiko bei weitem geringer als das bei Nicht-Impfung bestehende Risiko. Diese Feststellung gilt unabhängig von der Frage, ob die Komplikationen in einem kausalen Zusammenhang zur Impfung stehen oder nicht.


Statistische Ignoranz in Deutschland: lebensgefährlich

Statistische Ignoranz in Deutschland: lebensgefährlich

Statistik hat in Deutschland einen besonders schweren Stand, in der Schule und in der Öffentlichkeit.
Dabei könnte gerade jetzt, in diesen harten Corona-Zeiten, richtig verstandene Statistik ein
Minimum an Klarheit und Wahrheit in die Welt bringen. Und elementares statistisches Verständnis
der Öffentlichkeit könnte - zum Beispiel bei der Einschätzung von Risiken - eine echte Lebenshilfe für
alle sein.

Aber was wir jetzt im Zusammenhang mit dem Impfstoff AstraZeneca an Ignoranz erlebt haben und
noch erleben, ist skandalös. Da verbreitet irgendeine verantwortungslose Agentur, AstraZeneca habe
("möglicherweise") nur eine Wirksamkeit von 8 oder 10%, und mehrere Fernsehmoderatoren (auch
im WDR!) geben diesen statistischen Unsinn ungeprüft weiter. Dann setzt die Ständige
Impfkommission nach und entscheidet, dass der Impfstoff für Über-64-Jährige zunächst nicht
zugelassen wird. Anstatt sich über die internationalen Statistiken zu informieren, teilt der
Vorsitzende der Kommission mit, dass ihm die Datenlage nicht ausreicht, um den Impfstoff für alle
freizugeben.

Und dann wundert sich die Politik darüber, dass die Öffentlichkeit essentiell verunsichert ist und der
Impfstoff ungenutzt liegen bleibt. Wann endlich werden die für solche Fehlinformationen und
todbringenden Fehlentscheidungen Verantwortlichen zur Rechenschaft gezogen?


Goethe, Trump und die Mathematik

Zur Bedeutung der Mathematik in der digitalen Bildung

Goethe und Trump in einem Atemzug? Eines der größten literarischen Genies der Geschichte und die Inkarnation der aggressiven Ignoranz  – die haben doch gar nichts gemeinsam, sollte man meinen. In einem Bereich leider doch:  Beide hatten und haben ein sehr distanziertes Verhältnis zur Mathematik und zur mathematischen Wahrheit. Bei Trump, der in einer selbst geschaffenen  narzisstischen Realität lebt, bedarf das vielleicht keiner genaueren Erläuterung, weil man weiß, wie er ganz allgemein mit der Wahrheit und mit  Erkenntnissen der Naturwissenschaften umgeht. Aber Goethe – der  mit seinen naturwissenschaftlichen Studien mehr Zeit verbracht hat als mit seiner Dichtung und dem zum Beispiel seine Farbenlehre besonders wichtig war? Die Elementarmathematik hat Goethe gelten lassen und wohl sogar geschätzt, aber über die „Höhere Mathematik“ und die Mathematiker (und Physiker) hat er gespottet: „Dass aber ein Mathematiker, aus dem Hexengewirr seiner Formeln heraus, zur Anschauung der Natur käme und Sinn und Verstand, unabhängig, wie ein gesunder Mensch brauchte, werd‘ ich wohl nicht erleben.“

Wir wollen der Frage, was Goethe zu dieser Geringschätzung der Mathematik veranlasst hat, hier nicht weiter nachgehen. Uns interessiert vielmehr die Frage, was heute los ist. Heute ist geradezu alles, was in der Welt an prinzipieller und an konkreter Erkenntnis gewonnen und an Innovation erreicht wird, wesentlich durch Mathematik geprägt:  jede technische und naturwissenschaftliche Entwicklung, jedes Gerät, jeder Algorithmus hat zumindest auch eine mathematische Dimension.  Das hat aber nicht etwa zur Folge, dass die heutigen Menschen in ihrer Mehrheit von der Mathematik fasziniert wären - bei den meisten, jedenfalls bei sehr vielen Menschen lösen mathematische Themen auch heute noch eher Unbehagen und unangenehme Erinnerungen an die Schule aus als Interesse und Begeisterung. Und auch heute erlebt man in der Öffentlichkeit, in TV-Shows, in den Medien, ja sogar in der Politik noch immer die augenzwinkernde Koketterie mit dem zur Schau gestellten und durch schlechte Schulleistungen nachgewiesenen Desinteresse  an Mathematik.

Mathematik hat beides, die abstrakte und die angewandte Seite. Für viele Fachleute und Interessenten ist die abstrakte Seite der Mathematik von faszinierender Schönheit. Einer großen Öffentlichkeit hat sich die Schönheit der Mathematik aber gerade in Deutschland nicht vermittelt. Und das mag in der Tat damit zusammenhängen, dass die meisten Menschen im „Land der Dichter und Denker“ Schönheit eher in der Natur, in der Kunst und in der traditionellen Kultur suchen und finden - als in etwas scheinbar Unsinnlichem wie der Mathematik. Und dafür steht eben Goethe und nicht etwa Gauss – auch wenn Daniel Kehlmann mit „Die Vermessung der Welt“  Gauss ein Stück weit ins reale Leben geholt hat.  Die Mathematik als Hochkultur, gar Liebe zur Mathematik – das scheint dann doch eher eine Emotion für einen kleinen Kreis von weltabgewandten Spezialisten zu sein.

Mit der angewandten Seite der Mathematik werden wir dagegen täglich durch eine Fülle  naturwissenschaftlicher Erkenntnisse und Gesetzmäßigkeiten konfrontiert. Noch eindrücklicher erleben wir die angewandte Mathematik in diesen Jahren und Jahrzehnten aber in den rasanten Entwicklungen der Technik, insbesondere in der sich immer weiter beschleunigenden Digitalisierung. Die digitalen Entwicklungen bieten faszinierende Möglichkeiten der  Zukunftsgestaltung, in allen technischen und ingenieurwissenschaftlichen Disziplinen und damit in einer auf vielfältige Weise innovativ geprägten Welt. Aber auch für die persönliche Lebensgestaltung und –vorsorge, etwa durch die individualisierte, datenintensive Medizin der Zukunft, deuten sich großartige Chancen an.  Dass trotz dieser vielversprechenden Perspektiven die digitalen Entwicklungen ethisch und politisch gesteuert und rechtlich kontrolliert werden müssen, sollte gesellschaftlicher Konsens sein. Gerade in  Deutschland haben aber die ängstlichen, überkritischen, bisweilen dystopischen Einschätzungen der Technologieentwicklung ein besonderes Gewicht–  bis hin zum endzeitlichen Bild der Übernahme der Welt durch sich selbst weiterentwickelnde robotische Maschinen. Auch wenn die prinzipiell wertfreien Modelle der Mathematik dabei für beides stehen, für Utopie und Dystopie, sie werden vielen  Menschen eher mit der düsteren als mit der beglückenden Zukunft assoziiert.

Dies sind Beschreibungen, keine Erklärungen für die sich von Mathematik distanzierende Koketterie, das Desinteresse, die Abneigung, den Hass auf die Mathematik. Was sind die Gründe? Ist es vielleicht der (schlechte) Mathematik-Unterricht, der eine positive Beziehung zur Mathematik in so vielen Fällen so nachhaltig stört? Tatsächlich gibt es viele hochkompetente und hochengagierte Mathematiklehrerinnen und –lehrer in deutschen Schulen. Andererseits hat der Autor es in seinen Seminaren und bei vielen anderen Gelegenheiten leider immer wieder erleben müssen, dass Lehrerinnen und Lehrer versuchen, den Schülerinnen und Schülern mathematische Zusammenhänge zu „erklären“, die sie selbst nicht verstanden haben. Solche gravierenden Fehler werden oft nur von hochbegabten Schülerinnen und Schülern durchschaut.

Auch in diesen Jahren und Tagen spielt das Thema „mathematische Bildung“ wieder eine aktuelle Rolle. Es kommt über die digitale Bildung ins Spiel. Digitale Bildung, darüber sind sich alle Akteure einig, ist eins der wichtigsten politischen Ziele überhaupt, Deutschland hat hier einen extremen Nachholbedarf. Aber sofort stellt sich die Frage: Was sind denn die Ziele  der digitalen Bildung? Wofür sollen die Milliarden €, die seit einigen Jahren den Ministerien, Schulen, Lehrerinnen und Lehrern zur Verfügung stehen, denn ausgegeben werden? Eine einfache (und richtige) Antwort ist: für Vernetzung, für die Ausstattung mit Hardware – darüber wird man sich schnell einig (auch wenn sich die Beschaffung als solche dann vielleicht über Jahre hinzieht und die Geräte schnell wieder veralten). Aber dann? Was sind dann – wenn die Ausstattung vorhanden ist  und die Arbeit anfangen kann – die Inhalte des digitalen Unterrichts? Öffentlich diskutierte Ziele sind insbesondere: Medienkompetenz, Programmierkenntnisse, Grundlagen der Informatik usw. – und immer wieder Medienkompetenz. Von mathematischen Inhalten ist in der öffentlichen und politischen Diskussion kaum die Rede.

Die Substanz alles Digitalen sind die Algorithmen. Aber dass Algorithmen immer auch einen mathematischen Kern haben, wird so deutlich nicht gesagt.  Kurios ist, dass gerade in Deutschland Informatik ein sehr positives Image hat,  Mathematik  aber ein überwiegend negatives. Sachlich ist das nicht begründet: Informatik und Mathematik haben einen großen Überlappungsbereich. Einige meiner führenden Kollegen machen gar keinen Unterschied zwischen den beiden Disziplinen. Und tatsächlich sind es gerade die Algorithmen, von denen man oft gar nicht sagen kann, ob sie eher der Mathematik oder der Informatik zuzuordnen sind. Gerade in den neuesten Entwicklungen wachsen zum Beispiel Algorithmen, die eher mit Daten umgehen und daher traditionell eher der Informatik zugeordnet werden, und Algorithmen, in denen überwiegend gerechnet wird und die daher eher der Mathematik zugeordnet werden, methodisch immer stärker zusammen. Die Algorithmen der Künstlichen Intelligenz und des Maschinellen Lernens sind dafür besonders markante Beispiele.

Insofern eröffnet die systematische Beschäftigung mit den grundlegenden Prinzipien traditioneller und aktueller Algorithmen eine große Chance, die Mathematik von ihrem negativen Image zu befreien und Mathematik und Informatik als zwei Seiten einer Medaille zu begreifen. Und wenn dieses Zusammenspiel schon in der Schule praktiziert und verstanden wird, hat Deutschland auch eine Chance, methodisch Anschluss an die internationale digitale Entwicklung zu finden.


Q-IBM - Wie man Zugang zum IBM Quanten-Computing bekommt

Die Qubit-Algorithmen dieser Blog-Serie zu verstehen und nachzuvollziehen macht mehr Spaß, wenn wir sie selber erstellen und laufen lassen können. Das geht mit IBM Quantum Experience, einer frei zugänglichen Umgebung, in der man Qubit-Circuits entwerfen und testen kann. Testen auf einem Simulator oder sogar echten IBM Quanten-Computern.

Wie kommt man da dran?

Zugang zur IBM Quantum-Computing-Umgebung

Es findet wie heute üblich, alles im Browser statt (Web-Application). Gesonderte Apps für Smartphone und Tablet gibt es für IBM Q Experience Apps (noch) nicht. Und über den Browser geht es dort nicht so richtig gut. Es wird also ein "richtiges" Gerät -  PC, Laptop, Mac oder ähnliches - empfohlen.

Im Browser gibt man ein
https://quantum-computing.ibm.com/login

Man sieht ... alles auf Englisch, natürlich! Daher ein paar Hinweise.

Beim ersten Mal muss man sich zunächst registrieren. (Später wird man direkt auf seine aktuelle Arbeitsumgebung geführt (s. Dashboard, unten)). Zum Registrieren dient der Link hinter "Create an IBM Account". Damit startet man die Registrierung. Ist erkennbar, dass der Link von einem deutschsprachigen PC aufgerufen wurde, findet der weitere Dialog auf Deutsch statt: "Bei IBM anmelden". "Sie haben noch kein Konto?" - Genau! Deshalb geht es dort weiter: Link "IBMId erstellen" (Die IBMId wird dann bei weiteren Login's gebraucht.)

Nun wird es wieder Englisch: "Sign up for an IBMId" ist die Seite, auf der E-mail, Name und Passwort und Land (Germany) eingegeben werden. Mit "Next" geht's weiter zu "Verify email", d.h. zur Überprüfung, ob die E-mail Adresse gültig ist und im rechtmäßigen Besitz des Users. Es wird dazu ein 7-stelliger Code an die eingetragene E-mail Adresse geschickt.  Also, in der Mailbox nachsehen und die 7 Zeichen in die kleine Box "Verification token" eintragen. Anschließend endlich "Create account" (Konto erstellen) anklicken. Dann erscheint - unvermeidbar - erst noch die Einwilligung zum IBM Konto Datenschutz. Mit "Proceed" bestätigen, und dann ist es schon geschafft.

Danach kann man die Kontoinformationen (E-Mail Adresse, Password) zum Login verwenden: Link-Adresse wie oben und dann auf "Bei IBM anmelden" die E-mail-Adresse eingeben und "Weiter". Wenn gewünscht, kann man vorher das Kästchen "Merken" ankreuzen. Dann noch das Passwort unter "Kennwort" eingeben. Und schon ist man drin!

Halt - nein! Beim ersten Mal muss man noch das IBM Quantum End User Agreement ankreuzen und "Accept & continue" klicken. Das ist halt so üblich, dass man die "Geschäftsbedingungen" akzeptiert. Und wie bei (kosten-)freien Diensten üblich, wird man anschließend gebeten, etwas über sich preis zu geben. "Your institution" ist ein Muss (Sternchen-Feld): hier gibt man  z.B. die Schule an oder irgendwas. Der Rest ist optional: Drop-down Auswahl über seine Vorkenntnisse mit "quantum", Freitext-Feld um anzugeben, was man mit IBM Q Experience machen will, und Auswahl-Liste, welche Informationen man zu IBM Q Experience erhalten will (per E-mail).

Dann endlich "Continue" und jetzt ist man (fast) drin. Wo drin?

Erscheinungsbild (User Interface) der IBM Quantum-Computing-Umgebung

Anfangs oder immer wieder beim Login wird man mit einem Fenster konfrontiert, das uns ein "Get started" Tutorial anbietet. Nicht schlecht, das mal durchzugehen, wenn man Zeit hat oder schon ein wenig mit dem Circuit Composer "gespielt" hat. Mit "Close" lehnen wir das Angebot ab.

Wenn man seine Zugangsdaten gespeichert hat und den gleichen Browser benutzt, wird man schon direkt auf seine aktuelle Arbeitsumgebung geführt (s. Dashboard, unten).

Anm.: Es ist natürlich alles auf Englisch, von daher erfordern die Tutorials und weitere Dokumente möglicherweise Englischkenntnisse, die über das schulische Niveau einer Mittelstufe hinausgehen.

Das User Interface öffnet sich mit einer Welcome-Seite. Neben der Begrüßung findet man dort einige Informationen über das, was man schon gemacht hat: Welche Circuits, welche Ergebnisse (results) anstehen (pending), welche zuletzt angefallen sind (Latest).

Spannend ist die Liste rechts der gerade verfügbaren "Backends". Das sind die Quanten-Computer, die weltweit zur Verfügung stehen (online). Zu jedem Eintrag gibt es Informationen darüber, wo er steht, wieviel Qubits er hat - und wieviel "Jobs" (Programmausführungen) in der Warteschlange stehen. Am Ende der Liste ist der "virtuelle" Quanten-Computer aufgeführt, der ibmq_qasm_simulator, den man aktuell mit bis zu 32 Qubits nutzen kann.

Diese Informationen sind umrahmt von einer Menüleiste mit teilweise kryptischen Symbolen. Die Menüleiste befindet sich links (s. Bild unten).

Einige Menü-Punkte des User Interfaces

Oben in der Ecke deuten drei waagerechte Striche an, dass man hiermit das Menü ausklappen kann, so dass man sehen kann, was die Symbole bedeuten. Hier einige kurz erläutert:

  • Dashboard: So heißt die Welcome Seite
  • Tools | Circuit Composer: Enthält im Kern den grafischen Circuit Composer mit den möglichen Gates und den (einstellbaren) Qubit / Mess-Bit Linien. Seit August 2020 sind hier noch eine ganze Reihe weiterer Widgets (Fensterchen) mit dargestellt.
    • Das für Messergebnisse (Measurement Probabilities) ist für die Blog-Serie interessant.
    • Statevector (Zustandsvektor) zeigt die (theoretischen) Faktoren an (als farbige Säulen), mit denen die verschiedenen Basiszustände in einer Superposition vertreten sind, so wie sie vom Qubit-Algorithmus gerade erzeugt wird. In der Blog-Serie auch als Koordinaten bezeichnet. Im Fachjargon des Quanten-Computing spricht man auch von der Amplitude.
    • Rechts gibt es noch einen Bereich für Dokumente und Tutorial-Empfehlungen. Alternativ (Tabs direkt darüber) kann man sich hier den QASM Skript-Code zur Grafik anzeigen lassen und verändern, oder die aktuelle Job-Übersicht.
    • Das ist leider ziemlich viel auf einmal und wird gegenüber der Vorversion leicht unübersichtlich für unsere Zwecke. Aber man gewöhnt sich daran und kann über den Menüpunkt View einiges "abwählen".
    • Die einzelnen Menüpunkte oben in der Leiste mit ihren Unter-Optionen muss man Zug um Zug kennenlernen. Zuviel, um das alles hier zu erklären. Es wird sicher auch deutschsprachige Tutorials dazu geben.
  • Tools | Quantum Lab: Der Bereich, in dem man Qubit-Algorithmen in Form von Python-Notebooks und mit Verwendung der Qubit-Programmbibliothek Qisqit erstellen und managen kann. Wir hatten ein Beispiel dafür im Kommentar zu Blog Q8.
  • Tools | Results: Zeigt die Übersicht der Resultate von QC-Jobs an.
  • Resources | Docs und Support: IBM Q Experience Dokumentationen, Tutorials und Zugang zu Q&A und anderen Support-Formen.

Der Circuit Composer in Kurzfassung

Ein kurzer Blick auf den Circuit Composer. Er erscheint innerhalb des User-Interfaces mit seiner Menüleiste am linken Rand, wie oben erklärt.

  • Der Circuit Composer hat eine eigene Menüleiste, waagerecht oben im Widget.
  • Im oberen Bereich (Widget) hat man die "Partitur". Die Gates und die Qubit- und Messbit-Linien. Natürlich kann man diese einstellen über Edit.
  • Darunter hat man weitere Widgets, z.B. die Measurement Probabilities, also die theoretische Vorhersage der Messergbnisse. Oder den "Zustandsvektor", der den (Superpositions-) Zustand des Qubit-Systems zeigt. Gezeigt wird der Zustand, der am Ende des Circuits resultieren würde. Alle nicht benötigten Widgets kann man "verstecken", z.B. über View.
  • Über Run Settings und Run on ... kann man den Qubit Circuit starten.
  • Die Ergebnisse findet man unter Jobs, einer von 3 Inhalten, die man in einem Widget ganz rechts darstellen kann. (Im Bild ausgeblendet.) Die anderen beiden enthalten Dokumentationen und Hinweise (Docs) und das QASM Code-Skript zum aktuellen Circuit.
  • Zwischen oberer Menüleiste und den Gates-Symbolen findet man eine typische Pfadangabe: Verzeichnis/Datei. Hier Circuits/Untitled Circuit. D.h. für den gezeigten Circuit haben wir noch keinen Namen vergeben. Das kann man mit dem Stift-Symbol ändern. Der Stift erscheint, wenn sich der Mauszeiger über den Circuit Namen befindet. Das Verzeichnis Circuits ist das Standard-Verzeichnis, in dem man alle seine gespeicherten Circuits (saved) wiederfindet.
  • Die Details und Unterpunkte findet man am besten heraus, indem man sie ausprobiert. Allerdings muss man sich mit einigen englischen Begriffen vertraut machen - was aber nicht so schwierig sein sollte, da die meisten ohnehin auch schon im deutschen Sprachgebrauch verwendet werden.

Wenn diese Zusatzinformation aus dem Kontext von Q8 heraus aufgerufen wurde: hier gehts zurück zu Q8.

 


P.S. zum Brief an einen Freund in der Corona-Krise

P.S. zum Brief an einen Freund in der Corona-Krise

Angesichts der explodierenden Fülle von Corona-bezogenen Artikeln in allen Medien - wie kann man da relevante von irrelevanten bis hin zu gezielt irreführenden „Beiträgen“, wie kann man Wahrheit von Unsinn und Unwahrheit unterscheiden? Das kann sehr mühsam sein: Um einer systematischen Unterscheidung willen müsste man die Artikel erstens lesen, zweitens ihre Relevanz untersuchen und sich drittens in vielen Fällen auch noch intensiv mit den Inhalten auseinander setzen. Das kostet Zeit, bringt selten bedeutsame Erkenntnis und erzeugt am Ende oft nur Ärger und Frustration. Ich selbst habe es deshalb aufgegeben, mich mit der Informationsflut zu befassen, mit der die Medien (und meine Mailbox) täglich überschwemmt werden. Dass dabei dann auch kluge, lesenswerte Beiträge ungelesen bleiben, das nehme ich in Kauf. Meine reale Informationsquelle sind die Zeitungen und Zeitschriften, von deren Solidität und Unabhängigkeit ich mich in vielen Jahren überzeugen konnte. Dass auch in diesen Organen die inhaltliche oder redaktionelle Qualität der Beiträge bisweilen drittklassig ist, auch das nehme ich in Kauf.

Mir ist im übrigen sehr bewusst, wie privilegiert ich als Wissenschafter bin: Als langjähriges Mitglied im Vorstand des Kuratoriums der Wissenschaftspressekonferenz (WPK) habe ich großes Vertrauen in die Arbeit der WPK-Mitglieder. Meine wichtigste Informationsquelle sind und bleiben schließlich die vielen hoch qualifizierten Kollegen aus allen Fakultäten, die ich im Laufe meiner wissenschaftlichen Arbeit und als Forschungsmanager kennengelernt habe. Diese Kollegen kann ich jederzeit ansprechen oder anrufen, wenn ich selbst im Zweifel bin oder Fragen habe.