Q10 Qubit-Algorithmen - Hinter die Kulissen geschaut

"Hinter die Kulissen schauen" - das heißt, die Effekte der Zwei- und Mehr-Qubit Algorithmen durch Zustandsübergänge zu erklären. Das ist, zugegeben, nicht ganz so einfach wie bei herkömmlichen Algorithmen, bei denen wir die Variablen - als Pendant zu den Qubits - einfach setzen, verrechnen und zu jeder Zeit "ansehen" können (print).

In Q9 hatten wir die Darstellung von Qubit-Zuständen für 2-Qubit Systeme eingeführt - in Form von Vierer-Koordinaten und, alternativ, in Ket-Schreibweise. Damit können wir nun einige elementare Qubit-algorithmische Komponenten nachvollziehen. In Q9 hatten wir eine Reihe von Circuit-Beispielen grafisch erstellt und vom IBM Qubit-Simulator ausführen lassen. Einige davon wollen wir anhand der Zustandsübergänge untersuchen und so erklären, wie es zu den Messergebnissen kommt. Besonders interessiert uns natürlich das Phänomen der Verschränkung und, was es mit dem Kick-back auf sich hat.

Zwei-Qubit-Zustände können durch vier Koordinaten (w, x, y, z) dargestellt werden, die   |w|²+|x²|+|y|²+|z|²=1 erfüllen. Also Punkte auf einer Art 4-dimensionalem Einheitskreis.

Wenn der Zustand aus einer Kombination von zwei Qubit-Zuständen, sagen wir (u,v) und (x,y), entsteht, dann sind die vier Koordinaten durch (u,v)⊗(x,y) = (ux, uy, vx, vy) bestimmt. Die Reihenfolge ist übrigens nicht vertauschbar! Und wir hatten per Circuit-Simulation und Nachrechnen schon gesehen, dass nicht jeder 2-Qubit-Zustand sich aus zwe 1-Qubit-Zuständen zusammensetzt (Verschränkung).

Zustände und Gates

Wir hatten schon in Q7 gesehen, dass man die 1-Qubit-Gates X und H durch die Koordinaten (x,y) eines Zustands ausdrücken kann:

X(x,y) = (y,x)  und  H(x,y) = 1/√2(x+y,x-y)

Ry hat einen Parameter, θ, der einen Drehwinkel beschreibt. Daher ist nicht Ry ein Gate sondern Ry(θ). Angewendet auf den Zustand (x,y), den man auch mittels seines Winkels auf dem Einheitskreis als (cos(α),sin(α)) ausdrücken kann, wirkt Ry(θ) auf (x,y) als "Bewegung" auf dem Einheitskreis um θ/2. Als Formel also

Ry(θ)(x,y) = (cos(α+θ/2),sin(α+θ/2))

(Das θ/2 ist wieder nötig, weil der Ry-Paramter eine andere Bedeutung hat als der Drehwinkel auf unserem Einheitskreis.) Man kann das immer überprüfen durch Tests mit einfachen Composer-Circuits.

Aber was ist mit dem CNOT Gate, dass ja zwei Qubit-Zustände "verknüpft"? Nehmen wir wieder (u,v)⊗(x,y) = (ux, uy, vx, vy) als generelles Beispiel. Dann ist

CNOT angewendet auf (u,v)⊗(x,y) = (ux, vy, vx, uy)

d.h. die 2. und 4. Koordinate werden vertauscht. Aber wie können wir das begründen? Und welcher von beiden ist der "controlling" (steuernde) Qubit-Zustand und welcher der "controlled" (gesteuerte)? Wir überprüfen das mit dem Effekt auf die Basiszustände in Koordinatendarstellung. Wir erinnern uns dennoch, dass (1,0) dem Ket |0> entspricht und (0,1) dem Ket |1>.

(0,1)⊗(1,0) = (0, 0, 1, 0) ---> CNOT ---> (0, 0, 1, 0) = (0,1)⊗(1,0)  gleich
(0,1)⊗(0,1) = (0, 0, 0, 1) ---> CNOT ---> (0, 1, 0, 0) = (1,0)⊗(0,1)  ungleich

(1,0)⊗(1,0) = (1, 0, 0, 0) ---> CNOT ---> (1, 0, 0, 0) = (1,0)⊗(1,0) gleich
(1,0)⊗(0,1) = (0. 1, 0, 0) ---> CNOT ---> (0, 0, 0, 1) = (0,1)⊗(0,1) ungleich

Die Zustände der beiden Qubits bleiben nach CNOT gleich, wenn der zweite Zustand (rechts) (1,0) ist. Das entspricht dem Ket |0>. Der linke Zustand ändert sich, wenn der rechte (0,1) ist, was dem Ket |1> entspricht. Der rechts vom ⊗ stehende Zustand verändert sich in keinem Fall. Damit ist klar, dass der Zustand von q0 im Circuit 7 (Control Qubit) in der Formel rechts stehen muss, und der von q1 (Controlled Qubit) links im ⊗-Ausdruck. Merkregel: Das passt zu den Bit-Ketten, die beim Messen der Circuits geliefert werden: von q0 ganz rechts bis q4 ganz links.

Nur zur Übung hier die vierte Zeile "übersetzt" in die Ket-Schreibweise.

|0>⊗|1> = |01> = 0*|00>+1*|01>+0*|10>+0*|11>
---> CNOT
---> 0*|00>+0*|01>+0*|10>+1*|11> =|11> = |1>⊗|1>
das q1 hat seinen Zustand von |0> auf |1> geändert, da q0 den Zustand |1> hat.

Wer Lust hat, kann die anderen CNOT-Transformationen ebenfalls in Ket-Schreibweise versuchen. (Die Kommentare unten werden gelesen!)

Verschränkte Qubits

Hier noch einmal der Circuit 7, der uns eine Verschränkung der Qubits q0 (obere Leitung) und q1 (untere Leitung) bescherte. Bisher konnten wir nur die Messergebnisse interpretieren. Mit den Formeln für H und CNOT können wir den verschränkten 2-Qubit Zustand bestimmen.

Die Ausgangszustände der beiden Qubits sind (1,0). Wenn H auf q0 angewendet wird, bekommen wir 1/√2(1,1) nach der Formel oben. Das CNOT müssen wir daher mit diesem Zustand als Control auf den Zustand von q1 anwenden, d.h. (1,0) steht links vom ⊗:

(1,0)⊗(1/√2,1/√2) = (1/√2, 1/√2, 0, 0) ---> CNOT ---> (1/√2, 0, 0, 1/√2)  = ???

Das Ergebnis von CNOT ist 1/√2(1,0,0,1) und das ist, wie wir in Q9 gesehen haben, nicht separabel, d.h. in zwei einzelne Qubit-Zustände zerlegbar.

Im Beispiel 2 des vorigen Blogs (Q9) hatten wir die Variante mit einem X-Gate auf der q1-Linie, vor dem CNOT, diskutiert. In der vorausgegangenen Rechnung würde daher ganz links ein (0,1) stehen, statt (1,0). Was wäre dann hier der Zustand bei Messung? Und ist der separabel oder verschränkt?

Kick-back Qubit 0

Im Blog Q9 hatten wir mit Beispiel 6 einen überraschenden Effekt, der als Kick-back bezeichnet wird. Der Algorithmus im Composer-Format sah so aus:

Die Messungen ergeben 01 und 11 zu je etwa 50%.

Wir versuchen das mittels der Abfolge der Zustände, die wir ja theoretisch berechnen können, zu verstehen. Wir verwenden dazu die Koordinaten-Darstellung der Zustände.

Qubit q0 beginnt im Zustand (1,0) und wird per H in (x,y) = 1/√2*(1,1) überführt. Qubit q1 beginnt im Zustand (1,0) und wird von X in (0,1) überführt. Darauf wird H angewendet, das nach der Formel oben den Zustand von q1 in (u,v) = 1/√2*(1,-1) überführt. Das 2-Qubit System hat damit den zusammengesetzten Zustand

(u,v)⊗(x,y) = (ux, uy, vx, vy) = 1/2*(1, 1, -1, -1)
---> CNOT   (Vertauschen der zweiten und vierten Koordinate)
---> 1/2*(1, -1, -1 ,1) = 1/√2*(1,-1)⊗1/√2*(1,-1)

Nun überführt H, auf q0 im Zustand 1/√2*(1,-1) angewendet, q0 in (0,1). Qubit q1 bleibt in 1/√2*(1,-1). Wir stellen damit fest:

  • Der 2-Qubit Zustand ist nicht verschränkt. Beide Qubits sind separat messbar.
  • Messung von q0 liefert immer 1, Messung von q1 liefert 0 und 1 zu 50%. Damit erwarten wir die 2-Qubit Zustände 01 und 11 zu 50%.

Das controlled Qubit hat damit eine Rückwirkung (Kick-back) auf das q0. Es kehrt den Zustand von q0 zu (0,1) um, obwohl HH(1,0) = (1,0) zu erwarten wäre. Wir werden das Kick-back später in einem komplexeren Algorithmus geschickt einsetzen. (Zur Übung lohnt es sich, diese Rechnung auch in Ket-Form durchzuführen.)

Mehr Gates, mehr Qubits

Bisher haben wir folgende Gates und ihre Formeln für die Zustandsüberführung kennen gelernt: Das X, H und Ry für 1-Qubit Zustände, sowie ein "Reset"-Gate, das im Composer schlicht als |0> gekennzeichnet wird.  Damit kann man im Verlauf der Zustandsentwicklung ein Qubit auf den Ausgangszustand zurücksetzten.

Das Instrumentarium der Qubit-Algorithmik enthält noch eine Reihe von weiteren Gates, die auch in einem Circuit eingesetzt werden können. Einige davon, die wir in unseren Blogs gebrauchen können, sind hier kurz erklärt. Wer Lust hat kann deren Wirkung unmittelbar in einfachen Circuits einmal ausprobieren - dabei ist aber zu beachten, dass verschiedene Zustände durchaus das gleiche Messergebnis liefern können.

  • Y-Gate: Hat für unsere Zwecke die gleiche Wirkung wie X.
  • Z-Gate: Überführt 1/√2*(1,1) in einem Schritt in 1/√2*(1,-1), und umgekehrt. Für diese beiden Zustände gibt es übrigens ein besonderes Ket-Symbol: |+> und |->. Es ist offensichtlich, welches Ket welchen Zustand kennzeichnet. Das Z-Gate überführt also |+> in |->. Klingt etwas exotisch, ist aber oft eine ganz praktische "Abkürzung". Beide Zustände liefern natürlich das gleiche Messergebnis, daher kann man die Wirkung von Z nicht unmittelbar an der Messung ablesen.
  • ID-Gate: Typisch Mathematik bzw. Informatik, es gibt immer auch eine Operation, die nichts verändert.
  • Zwei-Qubit Gates:
    • Swap-Gate, symbolisiert durch die zwei X, die übereinander stehen und mit einer senkrechten Linie verbunden sind: Vertauscht die Zustände der beiden betroffenen Qubits
    • cH, controlled H-Gate: Analog zum CNOT führt es H für das controlled Qubit aus, wenn das controlling Qubit im Zustand |1> ist.
    • Controlled Z-Gate, symbolisiert durch die zwei mit einem senkrechten Linie verbundene Punkte:  Analog zum CNOT führt es Z für das controlled Qubit aus, wenn das controlling Qubit im Zustand |1> ist.
  • Das Tofoli-Gate ist ein 3-Qubit Gate. Um das zu verstehen müssen wir zunächst unsere Zustandsbeschreibungen auf 3-Qubit Zustände erweitern.

Das machen wir gleich im Anschluß, ohne große Pause. Wir holen uns nur schnell einen Kaffe oder ein stilles Wasser. Dann gehts hier weiter.

Hier noch ein paar neue Begriffe aus diesem Anschnitt in Fortführung der tabellarischen Übersicht.

Begriff englisch Begriff deutsch Bedeutung
CNOT-Gate CNOT-Gatter Controlled NOT - CNOT verknüpft zwei Qubits. In Abhängigkeit vom Zustand des einen Qubits ändert sich der des anderen.
Control Control Qubit, dessen Zustand beim CNOT Gate den des anderen "steuert"
Controlled Controlled Qubit, dessen Zustand beim CNOT Gate durch den des anderen "gesteuert" wird.
Y, Z, ID Y, Z, ID Weitere 1-Qubit Gates
2-Qubit Gates 2-Qubit Gates Gates, die sich über zwei Qubits erstrecken
Swap-Gate Swap-Gatter 2-Qubit Gatter, vertauscht die Zustände zweier Qubits
cH-Gate cH-Gatter Controlled H-Gate, analog CNOT für H
cZ-Gate cZ-Gatter Controlled Z-Gate, analog CNOT für Z
Tofoli-Gate Tofoli-Gatter Ein controlled 3-Qubit Gate. Eine Art Erweiterung des CNOT auf 2 steuernde Qubits.
|+>, |-> |+>, |-> Ket-Bezeichnung für 1/√2(1,1) bzw. 1/√2(1,-1)

 


Q9 Verschränkung und andere 2-Qubit Phänomene

Der Einsatz des CNOT Gates in Q8, Beispiel 7 (Circuit 7), führte zu einem überraschenden Ergebnis im Vergleich zu den vorausgehenden 2-Qubit Circuits. Es gibt von den sonst möglichen vier 2-Bit Messergebnissen nur die Ergebnisse 00 und 11 aus. Die beiden Qubits sind scheinbar "gleichgeschaltet". Man bezeichnet dieses Phänomen in der Qubit-Welt auch als Verschränkung (entanglement). Warum, das wird weiter unten noch genauer erklärt.

Es drängen sich eine ganze Reihe von Experimenten mit Varianten von Circuit 7 auf, von denen wir uns einige ansehen wollen. Wir werden dabei nicht immer die Composer-Grafik dazu einfügen. Wer Lust hat, kann sich das Bild dazu aufmalen. Noch besser und spannender wäre es, die 2-Qubit Circuits nicht nur zu diskutieren, sondern selbst mit dem IBM Q Experience Simulator auszuprobieren. Der Zugang ist, wie gesagt einfach und in einem eigenen Blog kurz beschrieben, und das Erstellen und Testen im Composer ist ebenfalls "Drag&Drop"-leicht.

2-Qubit Circuits

Circuit 7 (Beispiel 7 in Q8)

Hier zunächst noch einmal die Ausgangsgrafik des "Circuit 7", der 00 und 11 mit der Häufigkeit 0.5 liefert.

1. Was würde passieren, wenn wir vor das H-Gate noch ein X einfügen würden? Einfache Überlegung: Der Startzustand |0> von q0 würde zunächst in |1> verändert. H angewendet auf |1> ergibt 1/√2 (|0>- |1>) (s. Q8, Beispiel 6). Der Unterschied zu Circuit 7 ist also das Minus-Zeichen. Nach CNOT mit q1 macht das aber keinen Unterschied im Messergebnis, denn die Häufigkeiten von 0 und 1 entsprechen dem Quadrat der Koeffizienten. Und (-1/√2)² ist das Gleiche wie (1/√2)². Damit erwarten wir das gleiche Ergebnis wie bei Circuit 7. Das Simulationsergebnis bestätigt dies.

2.  Was wäre, wenn X auf q1 vor CNOT angewendet würde? Dann ist q1 vor CNOT im Zustand |1>. Für q0 im Zustand |1> ändert sich dann q1 zu |0>, sonst bleibt es |1>. Wie demnach zu erwarten, liefert die Messung nun 01 und 10 zu je rund 50%. Wir haben hier also einen Circuit der "Ungleichschaltung". Wenn wir bei einem Qubit z.B. eine 0 messen, wissen wir, dass das andere 1 ergeben muß. Und umgekehrt. Wir haben hier also auch eine Form der Verschränkung.

3. Was ist ausschlaggebend für das Verschränkungsphänomen? Ist es das H-Gate? Was ein X-Gate zusätzlich bewirkt, bei q0 oder q1, haben wir schon gesehen. Versuchen wir es mal mit anderen Gates und testen das mit dem Simulator. Bleiben wir zunächst bei Qubit 0 und ersetzen das H durch X bzw. durch unsere Rotation Ry.

Ersetzen wir H durch X, können wir das Ergebnis einfach vorhersagen: X verkehrt den Ausgangszustand, also ist q0 bei CNOT im Zustand |1>, damit wird q1 umgekehrt, also |1>. Wir bekommen determiniert das Ergebnis 11 bei 100% der Messungen.

Ersetzen wir H durch Ry mit dem Gate-Parameter π/3, dann wird der Startzustand von q0 im x-y-Koordinatensystem um 30º gedreht.

 

Als Simulatorergebnis (1024 shots) bekommen wir: 74% 0000,   26% 0011.

D.h. wir finden wieder eine "Gleichschaltung" der Zustände wie in Circuit 7, allerdings mit einer anderen Häufigkeitsverteilung. Die entspricht der Häufigkeitsverteilung bei einer 1-Qubit Anwendung von Ry(π/3)  in Q8, Beispiel 3b. Offenbar ist das Vorliegen einer Superposition für q0 ausschlaggebend für Verschränkung. Wir werden später sehen, ob die Vermutung stimmt.

4. Nun zu q1. Was passiert, wenn wir q1 in eine Superposition versetzen, z.B. mittels H.

Als Simulationsergebnis bekommen wir hier eine Häufigkeitsverteilung über alle 4 Möglichkeiten. Z.B.:

Bit-Ergebnis H Ry(π/3)
0000 26% 36%
0001 25% 11%
0010 23% 13%
0011 26% 40%

Setzen wir statt H die Rotation Ry(π/3) ein, ergibt sich das enstprechende Bild (rechte Spalte) zu rund 3/8, 1/8, 1/8, 3/8.

Die beiden Beispiele zeigen offenbar keine Verschränkung, sondern eine  Verteilung über alle 4 möglichen Messergebnisse. Wenn wir aufgrund der Experimente mit den Varianten eine Vermutung anstellen wollten, dann die, dass CNOT eine Verschränkung (ob gleich oder ungleich geschaltet) nur dann liefert, wenn eines der Qubits  in einem Basiszustand ist. Wir werden diese Vermutung weiter unten "rechnerisch"  untersuchen.

5. Bisher haben wir zusätzliche Gates immer vor das CNOT geschaltet. Was ist, wenn wir das im verschränkten Zustand tun?  Die einfachste Variante ist, ein X-Gate nach dem CNOT auf die q1-Leitung zu setzen. Also so:

Was würde man erwarten? Vor dem X-Gate ist der Zustand des 2-Qubit-Systems verschränkt bzgl. 00 und 11. Danach findet man als Messergebnis die "Umkehrung", 01 und 10. Das gleiche finden wir, wenn wir das X-Gate auf q0 setzen. Schalten wir dagegen für beide Qubits ein X-Gate nach, bleibt das Ergebnis 00 und 11 zu je 50%.  Macht man die gleichen Tests mit dem H-Gate anstelle des X-Gate, bekommt man - und das ist nicht mehr ganz so überraschend - bei einem H-Gate jeweils eine Verteilung über alle 4 Möglichkeiten, bei H auf beiden Wires wiederum das Ergebnis 00 und 11 zu je 50%.

Es sei betont, dass wir immer nur die Messergebnisse sehen. Was mit den Zuständen passiert, können wir erst untersuchen, wenn wir ein formale Beschreibung für Systeme aus zwei oder mehr Qubits haben.

6. Ein algorithmisches Beispiel kann uns aber doch noch überraschen. Es ist gleichzeitig ein ziemlich wichtiger Baustein für Qubit-Algorithmen. Das Schaltbild dazu ist

Das Ergebnis ist - 01 und 11 zu je 50%! Das scheint zu keinem der bisherigen Ergebnisse zu passen. Ohne das nachgeschaltete H-Gate für q0  bekommen wir, wie zu erwarten, das Ergebnis von Beispiel 4, also alle vier Ergebnismöglichkeiten zu 25%. Abgesehen davon, wissen wir, dass H, zweimal hinternander auf |0> angewandt, wieder |0> ergbit.

Es würde uns jetzt nicht wundern, wenn es auch eine Circuit-Variante gibt, die 00 und 10 liefert. Richtig, ohne das X-Gate, also die initiale Umkehrung des Startzustands von q1! Wenn wir beides zusammen betrachten, sieht es so aus, als ob das Ergebnis von Qubit q0, das rechte der zwei Bits, durch q1 umgeschaltet. Durch das CNOT sollte aber doch eigentlich q0  das q1 beeinflusst. Trotzdem, dieser Effekt ist korrekt und hat den schönen Namen (phase) kickback - das von q0 gesteuerte q1 "schlägt zurück". (Wir werden davon in Q15 interessanten Gebrauch machen.)

Es gibt noch zwei weitere Ergebnisse ähnlicher Art, nämlich 00 und 01 zu 50% und 10 und 11 mit je 50%. Es ist interessant zu versuchen, 2-Qubit Circuits zu konstruieren, die diese Ergebnisse liefern. Wer Lust hat, möge das mit dem IBM Composer ausprobieren.

2-Qubit Zustände

Um das zu verstehen, müssen wir uns mit den "Formeln" für Zwei- und Mehr-Qubit-Systeme befassen. Zunächst mal für 2-Qubit-Systeme,  auch 2-Qubit-Register genannt, in Anlehnung an das Bit-Register, der zentralen Komponente eines herkömmlichen (Bit-)Prozessors.

Wir erinnern uns, dass wir Qubit-Zustände als Punkte auf dem Einheitskreis im x-y-Koordinatensystems beschreiben können. Also z.B. (x,y) = (1/√2, -1/√2). Eine etwas andere Schreibweise, die häufig verwendet wird aber das Gleiche bedeutet, ist die, einen Qubit-Zustand als Kombination der Basis-Zustände (1,0) und (0,1) zu schreiben, für die außerdem  die (aus der Quantenphysik stammenden) Symbole |0> und |1> verwendet werden. Das mag verwirren; es ist aber manchmal leichter einen Qubit-Zustands-Sachverhalt mal in der einen oder der anderen Form zu beschreiben. Man mache sich klar, dass (x,y) und x*(1,0)+y*(0,1) und x*|0>+y*|1> das Gleiche ausdrücken. Aus historischen Gründen nennt man diese Schreibweise die Ket-Schreibweise - statt z.B. "Rechts-Spitzklammer"-Schreibweise - und nennt ein Symbol |a> für einen Qubit-Zustand ein ket, bzw. ket-a.

Was ist nun der Zustand eines 2-Qubit-Systems? Eigentlich nur die Kombination von zwei Qubit-Zuständen nach der Methode "jeder mit jedem". (Wem das zu unmathematisch klingt, kann sagen, es ist das Tensorprodukt der beiden.) Haben wir also ein Qubit q0 im Zustand (u,v) und q1 im Zustand (x,y), so ist der Zustand des 2-Qubit-Systems (ux, uy, vx, vy). Er besteht also aus 4 Koordinaten, die sich aus der Multiplikation der Koordinaten der beiden Qubit-Zustände ergibt. Hier sind einige übliche Schreibweisen, an die man sich wohl gewöhnen muß - es steckt aber immer das Gleiche dahinter:

(u,v)⊗(x,y) = (ux, uy, vx, vy)

oder, wenn wir in der Ket-Schreibweise den Zustand  von q0 mit |a> und den von q1 mit |b> symbolisieren

|a>⊗|b> = (ux, uy, vx, vy), wenn wir |a>=u*|0>+v*|1> und |b>=x*|0>+y*|1> für die Zustände von q0 und q1 schreiben.

Wenn man den 2-Qubit-Zustand so beschreibt, stellt man fest, dass erfreulicherweise die 4 Koodinaten wieder auf einem 4-dimensionalen "Einheitkreis" liegen. Das ist schwer vorzustellen, aber einfach als Formel auszudrücken:

|ux|²+|uy|²+|vx|²+|vy|² = 1

Da die Einzel-Zustände auf dem "normalen" Einheitskreis liegen, also |u|²+|v|²=1 und |x|²+|y|²=1, ergibt sich das einfach durch Ausrechnen von (|u|²+|v|²)* (|x|²+|y|²).

Wir konstruieren uns einige Beispiele und zeigen sie in der Tabelle in Koordinatenform. In der rechten Spalte ist das jeweilige 2-Zustands-Messergebnis dargestellt, also das, was wir z.B. bei den Messungen entsprechender 2-Qubit Circuits erwarten können.

Koordinaten Koordinaten Messung
q0 q1 2-Qubit-Zustand 2-Bit Ergebnis : Häufigkeit
(1,0) (1,0) (1,0,0,0) 00: 1.0
(1,0) (0,1) (0,1,0,0) 01: 1.0
(0,1) 1/√2*(1,1) 1/√2*(0,0,1,1) 10: 0.5  11: 0.5
(u,v) (x,y) (ux,uy,vx,vy) 00: |ux|²  01: |uy|²  10: |vx|²  11: |vy|²

Zum Vergleich - und zur Gewöhnung - schreiben wir die Tabelle noch einmal in Ket-Schreibweise. (Die Messergebnisse sind die gleichen.)

q0 - Ket q1 - Ket 2-Qubit-Zustand - Ket
|0> |0> 1*|00>
|0> |1> 1*|01>
|1> 1/√2*(|0>+|1>) 1/√2*(|10>+|11>)
u|0>+v|1> x|0>+y|1> ux|00>+ uy|01>+ vx|10> + vy|11>

Etwas fällt vielleicht noch auf: die Kets mit zwei Ziffern, etwa |01>. Das ist einfach wieder eine abkürzende Schreibweise für |0>⊗|1>, also die Kombination von zwei Qubit-Zuständen (in Ket-Schreibweise) zu einem 2-Zustands-Ket.

Die Ket-Schreibweise erleichtert bei Zwei- und Mehr-Qubit-Zuständen die Sicht auf die Messergebnisse. Der Operator M, auf einen allgemeinen 2-Qubit-Zustand (w, x, y, z) angewendet liefert die Wahrscheinlichkeiten |w|², |x|², |y|², |z|². Aber was ist was? Man kann sich merken, dass |w|² für Bitfolge 00 der Messung, |x|² für 01 usw. gilt. Schreibt man den Zustand in Ket-Form, dann sieht man es sofort. Denn (w,x,y,z) = w|00> + x|01> + y|10> + z|11>. Damit ist, bei 2-Qubit-Zuständen,

M(w,x,y,z) = ( |w|², |x|², |y|², |z|²)

eine "theoretische Formel" für den Messvorgang. Gemessen wird der Zustand, das Ergebnis (rechts) sind Wahrscheinlichkeiten für die 2-Bit-Folgen. Man hat hiermit also eine Verknüpfung zwischen Qubits und klassichen Bits.

Um Verwirrung zu vermeiden, werden wir allerdings im Weiteren vorzugsweise die Koordinaten-Schreibweise verwenden.

Verschränkte 2-Qubit-Zustände

Im Prinzip kann man alle Punkte im 4-dim Koordinatensystem, die als Summe ihrer Quadrate 1 ergeben, als 2-Qubit-Zustände betrachten. Bei Messungen ergäben sich aus solchen Zuständen die Quadrate der Koordinaten als Häufigkeitsverteilung über die vier möglichen (Bit-) Messergebnisse 00, 01, 10, 11. D.h. beliebige 4 Zahlen (w, x, y, z) mit |w|²+|x²|+|y|²+|z|²=1 ergeben einen zulässigen 2-Qubit-Zustand.

Allerdings, nicht jeder Zustand in dieser Form lässt sich - wie oben - aus den Zuständen von zwei Qubits herstellen! Das ist verblüffend, aber lässt sich leicht überprüfen.

Circuit 7, oben, lieferte als Messung 00 und 11 mit Häufigkeit 0.5, und 01 bzw 10 mit Häufigkeit 0. Wenn der (unbekannte) 2-Quibt-Zustand, der zu dieser Messung führt, eine Kombination (u,v)⊗(x,y) = (ux, uy, vx, vy) von zwei Qubits wäre, müssten |ux|² = |vy|² = 0,5 sein und gleichzeitig |uy|² = |vx|² = 0. D.h. einerseits müssen u,x,v und y ungleich Null sein, andererseits müssen u oder y, sowie v oder x Null sein. Das ist offensichtlich ein Widerspruch.

Der Zustand, der in Circuit 7 gemessen wird, ist damit ein zulässiger und herstellbarer 2-Qubit-Zustand. Er kann aber nicht aus zwei Qubits zusammengesetzt werden, oder, anders ausgedrückt, er ist nicht separierbar. Das System aus zwei Qubits, das in einen nicht-separierbaren 2-Qubit-Zustand überführt wird, ist verschränkt. Das ist es, was dahinter steckt! Man mag nun selber überprüfen, welche der Circuits oben ebenfalls verschränkte Zustände liefern. (Wer Lust hat - der Kommentar-Bereich steht offen.)

Eine Konsequenz der Verschränkung ist, dass man nicht von den Zuständen der beiden Qubits sprechen kann. Im eigentlichen Sinne haben sie keinen Zustand. Allein das Gesamtsystem hat einen Zustand. Insofern kann man auch nur das Gesamtsystem messen, nicht die "involvierten" Qubits.

Die Wirkung von Gates

Mit Hilfe der Zustandsbeschreibungen können wir nun auch die Wirkung von Gates "berechenbar" machen. D.h., obwohl wir sie nicht per Messung verfolgen können, lässt sich die Abfolge der Zustände rechnerisch darstellen.

Das machen wir im nächsten Blog-Beitrag; denn jetzt haben wir uns spätestens eine Pause verdient, bei der wir entspannt noch mal über alles nachdenken können.

Hier geht's dann anschließend weiter.

Stay tuned!

Hier noch ein paar neue Begriffe aus diesem Anschnitt in Fortführung der tabellarischen Übersicht.

Begriff englisch Begriff deutsch Bedeutung
Entanglement Verschränkung Nicht separierbarer Gesamtzustand eines 2-Qubit Systems
Separable Separierbar 2-Qubit-Zustand, der sich aus zwei Qubit-Zuständen zusammensetzem lässt.
Register Register System von zwei oder mehr Qubits auf dem algorithmische Operationen ausgeführt werden
Ket Ket Zweite Silbe von Bra-cket. Schreibweise für Qubit-Zustände
Symbol ⊗ Symbol ⊗ Symbolisiert die Kombination von zwei Qubit-Zuständen zu einem Gesamtzustand.
|00>, |01> etc |00>, |01> etc Kurzschreibweise für |0>⊗|0>, |0>⊗|1>usw.
(Phase) Kickback (Phase) Kickback Spezielle Rückwirkung zwischen CNOT verbundenen Qubits

 

 


Offener Brief an einen Freund in der Corona-Krise

Lieber Freund,

die Corona-Krise hat uns voneinander entfernt. Du hast, gleich nachdem Bund und Länder die harten Maßnahmen des Social Distancing und des Shutdown beschlossen hatten, gegen die Maßnahmen protestiert und zum öffentlichen Protest (auf Deiner Webseite) aufgerufen. Es war für Dich klar und Du hast von mir erwartet, dass ich - als Mathematiker - Dich in Deinen Bemühungen, den Protest öffentlich zu machen, unterstützen würde.

Für mich war die Sache so einfach nicht. Auch ich war über manche der öffentlichen Äußerungen von Experten und Politikern in Talkshows und auf Pressekonferenzen bisweilen irritiert. Die Gefährlichkeit des Virus wurde z.B. oft durch Zahlen und Kurven belegt, die ich als Mathematiker für unverständlich und irreführend halte. Von Beginn der Krise an war die Datenbasis unzureichend und unübersichtlich und die Statistik infolgedessen äußerst fragwürdig; die Interpretation des Zahlenmaterials durch die Medien erschien mir bisweilen durchaus willkürlich. (Einige der Fragen, die sich mir stellten, habe ich schon an anderer Stelle veröffentlicht.) Trotz dieser Fragen hatte ich nie Zweifel an der unbestreitbar hohen Kompetenz der erstklassigen Experten, über die wir in Deutschland verfügen. Einige kenne ich auch persönlich; sie geben ohne Zweifel ihr bestes, um die Situation realistisch einzuschätzen und die aktuellen Probleme zu bewältigen. Dass es auch unter Experten immer mal wieder Selbstdarsteller gibt, denen ihr Auftritt und ihre Wirkung wichtiger ist als die Sache - das ist nun einmal leider so. Insgesamt war und bin ich aber überzeugt, dass wir mit unseren Experten höchst zufrieden sein können.

Dass die von der Bundesregierung und den Ländern getroffenen Maßnahmen hart waren, was die Wirtschaft, die Arbeitswelt, die Gesellschaft als Ganzes, das öffentliche und das private, familiäre Leben angeht, ist auch unbestreitbar. Und dass gerade jetzt, wo es um eine vorsichtige Öffnung geht, manche Einzelentscheidungen schwer zu verstehen und fragwürdig sind, auch das kann ich den Kritikern gern zugestehen. Aber dass unser Rechtsstaat bedroht sei und die Gefahr bestünde, einige unserer grundgesetzlich garantierten Rechte könnten uns auf Dauer abhanden kommen - das sehe ich überhaupt nicht. Jeder Verantwortliche weiß, dass wir uns in einer extremen Ausnahmesituation befinden und dass die Maßnahmen nur durch diese Ausnahmesituation gerechtfertigt sind. Einzelne Maßnahmen können trotzdem grundsätzlich oder praktisch falsch sein; und es kann dringend erforderlich sein, solche problematischen Maßnahmen nachträglich einer juristischen oder parlamentarischen Kontrolle zu unterziehen.

Während die Gefährlichkeit der Pandemie und die Angemessenheit der Maßnahmen in vielen  Bereichen noch diskutabel sein mögen -  bei den meisten der absurden Gerüchte und abwegigen Verschwörungstheorien, mit denen die Öffentlichkeit seit Wochen überschüttet wird, hört für mich jede Toleranz auf. Besonders empören mich die Darstellungen im Internet, die von angeblichen Experten in einer Weise verbreitet werden, dass der Laie kaum eine Chance hat, sie von fundierten Aussagen kompetenter Experten zu unterscheiden. Und ich kann auch solche Plattformen nicht akzeptieren, die sich "offen" geben und zwischen relevanten und subtil diffamierenden Beiträgen nicht differenzieren. Solchen Diffamierungen sind manche untadeligen, hochkompetenten Wissenschaftler (wie z.B. Christian Drosten) und weltweit engagierte Philanthropen (wie Bill Gates) ausgesetzt. Unerträglich.

Es ist mir wichtig, Dir meine Sicht der Dinge zu erklären. Ich sehe mich als Wissenschaftler der Wahrheit verpflichtet. Dabei ist mir bewusst, dass Wahrheit ein großes Wort ist und die Wahrheit oft schwer zu erkennen ist. Aber wo man die Unwahrheit kennt oder erkannt hat, gibt es keine Rechtfertigung, sie zu verbreiten.

Ich weiß, dass wir uns beide der Wahrheit in diesem Sinne verpflichtet fühlen.

Dein Ulrich


Q8 Fingerübungen - Einfache Qubit Algorithmen ausprobiert

Wir wissen nun, was ein Qubit ist. Genauer, wie man ein Qubit modellieren kann - aber wir wollen uns ein wenig sprachliche Vereinfachung zugestehen, solange wir uns darüber im Klaren sind. Fassen wir noch einmal zusammen:

Ein Qubit ist ein Konstrukt, das einen Zustand hat, der durch Operatoren  beeinflusst wird, und der über ein Messverfahren einen binären Wert liefert (Bit). Der Zustand ist aus einer kontinuierlichen (unendlichen) Menge.  Wiederholte Messungen bei gleichem Zustand liefern eine Häufigkeitsverteilung über die binären Werte, die man als Wahrscheinlichkeitsverteilung dem Zustand zuordnen kann.

Wir legen fest, dass die Operatoren den Zustand determiniert beeinflussen, mathematisch also eine Abbildung darstellen. D.h. gleicher Operator angewendet auf gleichen Zustand liefert gleiches Ergebnis (neuer Zustand). Für das Messverfahren gilt das natürlich nicht. Wohl aber für die Zuordnung der Wahrscheinlichkeitsverteilung zu einem Zustand.

In diesem Sinne ist ein klassisches Bit auch ein Sonderfall eines Qubits. Wieso?

Für die konkrete Beschreibung von Qubits verwenden wir (einfache) mathematische Ausdrücke: Die Zustände beschreiben wir durch die Koordinaten (x,y) eines Punktes auf dem Einheitskreis in der x-y-Ebene. Die binären Messwerte bezeichnen wir mit 0 und 1. Für die Punkte, die einen Zustand repräsentieren, verwenden wir gelegentlich "Namen" anstelle der Koordinaten; das macht manchmal das Lesen einfacher. Insbesondere sind folgende Bezeichnungen in der Qubit-Welt üblich: |0> für (1,0), |1> für (0,1) - also für die Punkte des Einheitskreises, die auf den positiven Koordinatenachsen liegen. (Diese Zustände hatten wir beim ZBIT-Modell mit [00] und [11] bezeichnet. Die etwas ungewöhnliche | >-Schreibweise erklären wir später. ) Damit kann man einen Zustand (x,y) auch als Kombination von |0> und |1> schreiben:  x|0> + y|1>.

Ein typischer Sprachgebrauch in der Qubit-Welt ist z.B. "das Qubit |1>" an Stelle von  "das Qubit im Zustand |1>".  Kein Problem, wenn klar ist, was gemeint ist. "Namen" für die Qubits sind wie herkömmliche Variablen-Namen zu verstehen und werden in den Composer-Grafiken links vor die zugehörige Linie gestellt. Sie sind der Einfachheit halber durchnummeriert. Entweder als q0, q1, usw. oder im Stile von Python-Listen als q[0], q[1] usw., also mit eckigen Klammern.

Ein weiterer häufig anzutreffender Begriff für die x-y-Kombination der beiden Basiszustände ist "Superposition", übersetzt als "Überlagerung", von |0> und |1>. Ein leicht mysteriös klingender Begriff für die Kombination der beiden Zustände. Der stammt aus der Physik und wird in der Mathematik übrigens Linearkombination genannt.

Wie wir in Q7 gesehen haben, ist für x|0> + y|1> dann |y|²  die Wahrscheinlichkeit p(1) für den binären Wert 1 bzw. |x|²=1-|y|² die für 0 bei der Messung des Qubits in diesem Zustand.

Man kann damit den Messvorgang, genauer, den wiederholten Messvorgang, auch als einen Operator darstellen, der Zustände (x,y) in Häufigkeiten von Bits überführt:

M(x,y) = M(x|0> + y|1>) = ( |x|², |y|²).

Bei Mehr-Qubit-Zuständen wird das, wie wir sehen werden, eine hilfreiche Darstellung. Wir bezeichnen M nicht als Gate, weil wir Gates für Übergänge von Zustand zu Zustand reservieren wollen, ( |x|², |y|²) aber kein Qubit-Zustand ist, sondern Wahrscheinlichkeiten für Bit-Ergebnisse.

Woher wissen wir, in welchem Zustand sich ein Qubit befindet? Man wählt |0> als Ausgangszustand, herstellbar durch die Operation R. Wenn wir anschließend weitere Operatoren anwenden, liefert jeder einen determinierten Folgezustand. Wenn wir die Wirkung der Operatoren berechnen können, wie in Q7 für X, H usw., können wir die Zustände nachverfolgen, wissen also bei der Messung, welcher Zustand vorliegt - auch wenn die Messung selbst nur ein Bit (0 oder 1) liefert. Dies ist ein wichtiges Prinzip, um Algorithmen für Qubits formulieren zu können.

1-Qubit Beispiele

Das wollen wir im Folgenden für einige erste kleine Beispiele mit einem bzw. zwei Qubit(s) tun und diese gleich auch auf einem Qubit-Computer realisieren.

Für einen Qubit Computer (physikalisch oder als Simulator) müssen wir fordern, dass wir die physikalischen Entsprechungen der Qubit-Operatoren so konstruieren können, dass sie - in wiederholten Messungen -  Häufigkeiten eines binären Ergebnisses liefern, die der Wahrscheinlichkeit von 0 und 1 in dem Operator-generierten Zustand entprechen. Klingt kompliziert, ist es auch. Aber wir machen nichts falsch, wenn wir darauf vertrauen, dass die Quantencomputer-Konstrukteure dafür gesorgt haben.

In Q7 u.a. hatten wir schon einige 1-Qubit Algorithmen in der Form R --- X --- H --- M oder ähnlich formuliert. Diese Schreibweise kommt der grafischen Darstellung im "Composer" (Komponisten) der IBM Q Experience Umgebung schon sehr nahe. Wir probieren es einfach und lassen die "Partitur" vom Simulator ausführen. (Wie man Zugang zur IBM Quantencomputing-Umgebung bekommt, wird in diesem Blog beschrieben. Besser noch, man findet es selbst heraus. Hier ist der Link zum IBM Q Login.) Es ist wirklich zu empfehlen, diese Erfahrung "in echt" zu machen (s. Q2). Statt des Simulators kann man zur Ausführung auch einen der verfügbaren echten Quantencomputer auswählen!

1. R--- X --- H --- M

Algorithmus im Composer-Format
Ergebnis einer Serie von 1024 "Shots"

Das Ergebnis zeigt die Häufigkeiten von 0 und 1 (interpretiert als klassische Bits) bei einer Serie von 1024 Durchläufen.  Die Legende der State-Achse ist für die gleichzeitige Messung von 5 Qubits ausgelegt, daher die 5-stelligen Bit-Ketten. Das Bit rechts kommt aus der Messung des Qubit Nr. 0, dem obersten im Composer, wenn wir mehrere Qubits haben. Dass die Achse mit "state" (Zustand) bezeichnet wird, ist etwas verwirrend. Gemeint ist bestenfalls der "Ausgabezustand".

Nicht ganz zufällig gibt es die hier schon verwendeten Operatoren X und H auch beim Qubit-Composer. Im Qubit-Sprachgebrauch werden die Operatoren Gates genannt, zu deutsch Gatter. Die Gates werden auf Wires (Leitungen) positioniert. Und die "Partitur" wird  in der Qubit-Welt Circuit (Schaltung) genannt. Am Anfang eines Qubit-Wire ist das Qubit auf den Ausgangszustand |0> gesetzt. Das Symbol (Gate) dafür im Composer ist nicht R sondern einfach |0>. Die beiden Gates auf dem Wire von Qubit q[0] heißen X-Gate oder NOT-Gate, weil es den Qubit-Zustand umkehrt,  und Hadamard-Gate (H-Gate), benannt nach dem französichen Mathematiker J. Hadamard. Die Wirkung hatten wir in Q7 bereits formelmäßig definiert.

Als ein anderes Beispiel nehmen wir aus Q7 "Vorhersagen und Erklärungen" die Nummer 8.

2. R ---- G60 ---- H ---- H ---- M

Composer-Bild für Beispiel 8 in Q7
Ergebnis bei 1024 Wiederholungen. Vgl. Q7/8.

Es fällt auf, dass wir bei der QBIT-Box das Dreh-Feld mit G bezeichnet haben, im Composer aber ein neues Gate Ry(2*pi/3) verwendet haben. Mit G hatten wir in Q7 den Dreh-Operator vereinfacht. So wie wir G definiert hatten, entspricht dem das Rotations-Gate Ry mit dem Paramterwert θ=2*pi/3. Man sieht in der Tabelle am Ende von Q7, dass dieses θ dem Winkel w=60º entspricht. (Die Gates in den Composer- bzw. Programmier-Umgebungen orientieren sich an einer anderen Zustandsbeschreibung, die dazu führt, dass der Winkel, den wir für Drehungen auf dem x-y-Einheitskreis definieren, in der Composer-Beschreibung verdopplet werden muss.)

3. R --- G30 --- X --- M vergleichen wir mit R --- G30 --- M, um die Wirkung von X zu verifizieren. Hier müssen wir, wie eben erklärt, für G30 das Gate Ry mit pi/3 parametrisieren. Wir verzichten dabei auf die Histogramme und notieren stattdessen nur die Häufikeiten der Messergebnisse.

a) 30 Grad Drehung und X: 23.633% 0, 76.367% 1
b) 30 Grad Drehung ohne X-Gate: 75.00% 0, 25.00% 1

Man sieht also sehr schön den Effekt eines X-Gates aus der wiederholten Messung: Es vertauscht die Zustandskoordinaten. Für die Basis-Zustände ergibt sich daraus: X: |0> -> |1>, d.h. (1,0) -> (0,1), und umgekehrt. Wir merken an, dass wir hier wieder von den Messergebnissen (Bits) auf den Zustand (Qubit) nach Anwendung der Gates schließen. Die Messergebnisse sind nicht der Zustand!

4. R --- Gw --- M. Das Diagramm der QBIT-Box Experimente in Q7 (blaue Punkte) ist natürlich auf diese Weise (3b) entstanden! Das w durchlief alle Werte von 0º bis 360º (das entspricht θ=2*pi) in 15º-Schritten. Für jedes w wurde ein Cirquit der Form 3b) erzeugt, der jeweils 50 Mal durchlaufen wurde. Die Häufigkeiten von 1 (das entspricht dem L) wurden in die Grafik eingetragen. Das Ganze wurde natürlich in Form eines kleinen (Python-)Programms durchgeführt. Im Kern einer Schleife über die verschiedenen Winkel steht dabei das Python-Pendant zum Composer Circuit:

## Circuit definieren 
q_box = QuantumCircuit(q, c) 
rot = k*2*pi/m 
q_box.ry(rot,q) 
q_box.measure(q[0], c)

Etwas ausführlicher wird das Programm in einem Kommentar zu diesem Blog gezeigt.

2-Qubit Beispiele

Bevor wir uns theoretisch mit Zwei- und Mehr-Qubit Kombinationen befassen, probieren wir einfach einmal ein paar Beispiele mit dem Composer praktisch aus. Wir müßten dazu natürlich auch unsere einfache Schreibweise für Qubit-Algorithmen erweitern, etwa zwei Zeilen untereinander. Das stimmt aber ziemlich genau mit den Composer Grafiken überein, die wir bereits in Abschnitt Q2 erkundet hatten. Daher formulieren wir die kleinen Algorithmen gleich als Circuit.

5. Probieren wir es mal mit

und versuchen zu verstehen, was wohl als kombiniertes Messergebnis herauskommen wird. Der Ausgangszustand von Qubit 0 (q0-Wire) wird mit X zu |1> und dann gemessen. Qubit 1 (q1-Wire) wird sofort gemessen, bleibt also im Zustand |0>. Grundsätzlich gibt es 4 mögliche Messergebnisse, nämlich die vier 2-Bit Kombinationen 00, 01, 10, 11. Das Ergebnis hier ist natürlich 100% 01.

Zur Erinnerung (an Abschnitt Q2): Auf der c-Linie kommen die Messergebnisse an - in Form von klassischen Bits (c für classical). Die 5 deutet an, dass die c-Linie die Ergebnisse von bis zu 5 Qubits aufnimmt (s. Histogram nächstes Beispiel), auch wenn wir hier nur 2 Qubits verwenden.

6. Etwas schwieriger:

Hier wird q0 zunächst geswitcht und dann mit dem Hadamard-Gate transformiert. D.h. |0> wird zu 1/√2 (|0> - y|1>), oder in Koordinaten wie in Q7 zu 1/√2(1,1). Die Wahrscheinlichkeiten für 0 und 1 als Messergebnis sind damit 1/2. Für q1 wird nach H der Zustand 1/√2 (|0>+y|1>) gemessen, was die gleichen Wahrscheinlichkeiten für Qubit 1 ergibt. Was ist also das Gesamtergebnis (1024 "shots")?

 

 

 

 

Hier zählen nur die zwei rechten Bits, so dass also die experimentellen Häufigkeiten um den zu erwartenden Wert 0.25 schwanken. (Die Konvention ist, das Bit-Ergebnis von q0 immer ganz rechts zu schreiben.)

7. Das Hello Qubit World Beispiel aus Q2 sah als "Partitur" so aus:

Hier finden wir nach dem H ein neues Gate, das offenbar zwei Qubits miteinander in Beziehung bringt. Das ist das Controlled-Not-Gate, auch als CNOT oder CX bezeichnet. Es beeinflußt q1 - da, wo das + im Kreis steht - in Abhängigkeit vom Zustand des Qubit q0. Genauer: wenn q0 im Zustand |1> ist, kehrt sich q1 um - hier also von |0> nach |1>. Ansonsten bleibt der Zustand von q1 unverändert, also hier |0>.

Schauen wir uns das Ergebnis an (1024 shots).

Das Histogramm zeigt nur positive Werte für die 2-Bit Messergebnisse 00 und 11, zu jeweils ziemlich genau 50%. Die beiden anderen, 01 und 10, kommen bei Messungen nicht vor.  Das hat verschiedene Konsequenzen, auf die wir später noch eingehen werden. Hier stellen wir erst einmal fest, dass das CNOT-Gate offenbar die beiden Qubits "gleichschaltet". Aber Achtung - nur bezüglich der Messergebnisse! Beide sind nach diesem Circuit entweder 0 oder 1, und was, das bestimmt q0. Um über die Zustände zu sprechen, müssen wir wieder unser Modell bemühen.

Damit können wir das Ergebnis noch besser verstehen: durch das Hadamard-Gate geht der q0-Zustand in die Kombination von |0> und |1> über, jeweils mit Anteil 1/√2. Daher ergibt sich der neue Zustand von q1 nach der CNOT-Regel als Kombination von |0> (unverändert) und |1> (verändert) mit den entsprechenden Anteilen von 1/√2. Und q1 kann nur 0 ergeben, wenn sein Zustand sich nicht geändert hat, also wenn q0 das Ergebnis 0 liefert. Andernfalls hätte sich q1 umgekehrt und würde 1 liefern. Das erklärt - in Worten - warum 01 und 10 nicht als Messergebnis auftreten können. Im nächsten Blog werden wir das "nachrechnen".

Die "Gleichschaltung" der beiden Qubits durch diesen Circuit bedeutet u.a., dass wir wissen können, welchen Messwert das andere Qubit hat, wenn wir nur das eine gemessen haben. Wir können aus einer Messung das Ergebnis beider Messungen erschließen! Das wirkt zunächst einmal ungewöhnlich und führt zu teilweise "geheimnisvollen" Deutungen. Doch davon später.

Ein kleiner Ausflug: Die Wires sind so etwas wie die "Lebenslinien" der beiden Qubit-Variablen q0 und q1. Sie beginnen beide in einem Anfangszustand und "enden" durch Messung. Mit etwas Phantasie kann man auch klassische Algorithmen als Composer Diagramm darstellen.

Pythogoras-Algorithmus in Compser-Form

Zum Beispiel kann man die Berechnung der Hypothenusenlänge nach dem Satz des Pythagoras a²+b²=c² so in Composer-Form darstellen. Dabei sind a,b,c die Variablen, 3 ,4, 0 die Anfangszustände, Q ist die Quadrat-Operation, W die Wurzel, und das Konstrukt in der Mitte mit dem S auf dem c-Wire ist die Summenbildung der Variablen auf den beiden oberen Wires im aktuellen Zustand. Die Messoperation ist hier P, für print. Auch hier "beobachtet" man nur die Anfangszustände und die print-Ausgaben. Noch enger ist die Analogie, wenn man sich das P "destruktiv" vorstellt,  d.h. die Variablen werden nach Ausgabe "gelöscht" oder auf Null gesetzt. Insgesamt also eine schöne Algorithmen-Analogie zum Verständnis der Composer-Diagramme.

An dieser Stelle ist erst einmal wieder eine Pause fällig. Wir haben Beispiele für kleine 1- und 2-Qubit Algorithmen untersucht und mittels Quantencomputer-Simulator praktisch ausprobiert. Außerdem haben wir zwei neue Gates kennen gelernt: als Entsprechung für unser G (Dreh-Feld) bei der QBIT-Box das Ry-Gate und das CNOT, das zwei Qubits verbindet. Und eine ganze Reihe neuer Begriffe, die im Sprachgebrauch der Qubit-Algorithmik verwendet werden. Es ist wieder hilfreich, sich eine tabellarische Übersicht zu machen und im weiteren Verlauf zu ergänzen. Der Anfang sei hier gemacht.

Begriff englisch Begriff deutsch Bedeutung
Composer Composer Tool bzw. Form zur grafischen Darstellung von Qubit-Algorithmen
Circuit Schaltkreis Qubit-Algorithmus
Wire Wire (Leitungen) Algorithmische "Lebenslinie" eines Qubits
Gate Gatter Qubit-Operator in einem Algorithmus
Paramter Parameter Gates wie Ry können eine Parameter haben, z.B. einen Drehwinkel.
|0>, |1>, |a> |0>, |1>, |a> Schreibweise für Qubit-Zustände, alternativ zu Koordinaten
Basis Basiszustand Hier |0> oder |1>
Superposition Überlagerung (Linear-)Kombination von Qubit-Zuständen, meist von |0> und |1>
Hadamard-Gate H-Gatter Spezieller Superpositionsoperator
M Operator M Operator Mess-Operator, berechnet aus Qubit-Zuständen Wahrscheinlichkeiten von Bit-Ergebnissen
Classical Bit Klassisches Bit Messergebnisse werden als Bits / Bit-Ketten ausgegeben
c-Wire c-Wire Wire, das die Messergebnisse aufnimmt (Bit-Ketten)
Initial State Anfangszustand Jedes Qubit beginnt im Zustand |0>
Ry-Gate Ry-Gatter Eine bestimmte Art der Drehung, vergleichbar mit dem G im ZBIT-Modell
shots shots Anzahl Durchläufe eines Algorithmus für Ergebnis-Statistik

 

Bevor es nun weiter geht mit  Mehr-Qubit Registern, werden wir noch einige verblüffende Besonderheiten des Circuits aus Beipiel 7 untersuchen.

Stay tuned! Hier geht's weiter.



Q7 Qubit - Ein Modell für Qubit-Algorithmen

Die gute Nachricht: Das ZBIT-Modell in der x-y-Koordinatendarstellung ist bereits das QBIT-Modell. Allerdings beschränkt auf 8 Zustände. R, X, H und M sind mit ihren Formeln dazu passend definiert. Mehr noch, man kann jeden Punkt (x,y) auf dem Einheitskreis als Zustand gelten lassen und die Operatoren liefern wieder einen gültigen Zustand. Und auch die Doppelt-Anwendung von X und H auf ein (x,y) liefert diesen Zustand wieder. (Wer Lust hat, kann regelrecht nachrechnen, dass HH(x,y) = (x,y) liefert und das gerne ins Kommentarfeld eintragen).

Eine ganze Reihe von Qubit-Algorithmen kann man bereits mit diesem ZBIT-Modell formulieren. Wer daher keine Lust hat, sich mit der Erforschung einer weiteren Box des Großen Experimentators zu befassen, kann daher auch zu Q8 über Qubit-Sprachgebrauch und Multi-Qubit-Modelle übergehen. Die nicht so gute Nachricht: Man verpasst dann die Möglichkeit, (x,y)-Zustände außer den 8 ZBIT-Zuständen zu entdecken. Mit dem ZBIT-Modell können wir keine Zustandsüberführung durchführen, die aus dem 8er-Set herausführt.

QBIT-Box

QBIT-Box bei Zimmertemperatur

Dieses Mal konfrontiert uns der Große Experimentator mit einer ganz mysteriösen Box. Schwarz wie die Nacht (ohne Mond und Sterne) mit nichts auf den Flächen. Keine Touch-Felder, keine Klappe, keine Aufschrift ist zu erkennnen. Was sollen wir mit dieser Box anfangen, wie sie erforschen, wie damit experimentieren?

 

 

Nach längerem Überlegen und Probieren kommen wir auf die Idee, die Box mal ins Gefrierfach zu legen und zu kühlen. Nach kurzer Zeit hat sie sich tatsächlich verändert und sieht so aus:

QBIT-Box gekühlt

Die Box ist nun grau und zeigt die Aufschrift QBIT, hat die üblichen beiden Touchfelder X und H und zusätzlich eine Art Touch-Drehrad mit der Kennzeichung G, einer Skala und einer Markierung am Rand. Es gibt keine Klappe, die man auf und zumachen könnte. Dafür aber ein umrahmtes quadratisches Feld mit zwei Touch-Feldern M und R darunter. Wir vermuten gleich, dass das M für "Messen" steht, also dem früheren "Klappe auf", und R für "Reset", das offenbar "Klappe zu" ersetzt. Was das Drehfeld bedeutet, müssen wir wohl experimentell herausfinden.

Nach einiger Zeit in Zimmertemperatur verschwinden die Strukturen auf den Flächen wieder und die Box sieht aus wie vor der Kühlung. Da hat sich der Große Experimentator wohl eine besondere Schikane ausgedacht? Wir müssen also vor jedem Experiment die Box hinreichend tief kühlen, das erschwert Untersuchung und die Überprüfung unseres Modell-Ansatzes. Egal, da müssen wir durch. Vielleicht hilft ja eine Cool-Box ein wenig.

 

QBIT-Box Experimente

Wir überprüfen zunächst das Naheliegende - immer im gekühlten Zustand. Die Touch-Felder R, X, H und M bewirken das Entsprechende wie bei der ZBIT-Box:

R ---- M -> Dunkel, d.h. das quadratische Anzeigefeld wird schwarz
R ---- X ---- M -> Licht, das Anzeigefeld wird hell.
R ---- H ---- M -> Dunkel und Licht jeweils mit der Häufigkeit ungefähr 1/2
Kombinationen, wie X---H und H---H zeigen ebenfalls die von der ZBIT-Box bekannten Ergebnisse.

Neu ist  das Touch-Drehrad G. Wir machen ein paar Versuche in Serie bei gleicher Einstellung. Dazu hilft die Skala am Rand. Wenn wir genau hinsehen, unterteilt die Skala den gesamten Kreis so ähnlich wie ein Ziffernblatt der Uhr. Allerdings haben die 12 Teilstriche noch Punkte jeweils auf der Mitte dazwischen. Ein Viertel des Umfangs hat damit 6 Markierungen, die analog zu einer Halbstunden-Skala sind. Im 360º Kreis entspricht das 15º. Wir bemerken, dass der "Zeiger" immer auf "3 Uhr" zurückspringt, wenn wir R betätigen, also scheint "3 Uhr" so etwas wie die Ausgangsposition des Dreh-Feldes zu sein.

Wir drehen den Zeiger auf "12 Uhr" bzw. 90° gegen den Uhrzeiger-Sinn (also mathematisch positiv) und berühren anschließend das "G" in der Mitte des Drehfeldes. Als Messergebnis leuchtet das Anzeigefeld hell. Wir wiederholen diese Operation mehrfach:

R ---- G90 ---- M -> L

und bekommen immer L. Nun liegt nahe, was wir, mehr oder wenniger systematisch, ausprobieren - immer mit ein paar Wiederholungen. Wir finden:

R ---- G45 ---- M -> Dunkel und Hell, vermutlich jeweils mit der Häufigkeit ungefähr 1/2
R ---- G00 ---- M -> Dunkel - das wußten wie schon, denn das ist genau das RM-Experiment von oben.
R ---- G30 ---- M -> D und L, mit einem Weiß/Schwarz-Häufigkeitsverhältnis von etwa 1:3.
R ---- G135 --- M -> D/L im Verhältnis etwa 1:1, also gleiches Ergebnis wie mit G45.
R ---- G180 --- M -> Dunkel für die Stellung "9 Uhr", also genau gegenüber der Ausgangsposition.

Mühselig, wie es sein mag, die Box muss systematisch erforscht werden. Wir machen die Experimente mit G für jeden der 12 Drehfeld-Teilstriche in Serie, 50 mal, und notieren die Häufigkeiten von Hell und Dunkel für jede Position. Die Grafik zeigt die Häufigkeit von Hell als Punkte über die 12 Teilstriche von "3 Uhr" bis "3 Uhr".

Häufigkeit von "hell" über 12 Stellung des Dreh-Feldes

Ein gewisses Muster ist zu erkennen, wenn auch spärlich. Machen wir das Ganze noch einmal für die Zwischenpunkte und tragen die in eine Gesamt-Grafik mit 24 Positionen ein.

Häufigkeit von L über 24 Einstellungen von G

Man erkennt, dass die Punkte, die die Häufigkeit von L im Experiment zeigen, über die verschiedenen Dreh-Feld Einstellungen periodisch sind. Bei 12, d.h. "9 Uhr"-Stellung, ist die Häufigkeit wieder 0, bei 2 und 18 sind die Werte 1. Soweit man die trigonometrischen Funktionen kennt (sin, cos), kann man hier eine Art sin-Funktion erkennen. Da die Werte aber immer zwischen 0 und 1 liegen,  sieht es eher nach sin² aus über 0 bis 360º, in 24 Schritten.

Bevor wir weitere Experimente machen, wollen wir versuchen, das Bisherige zu verstehen, d.h. uns ein passendes QBIT-Modell zu machen, das auch die Operation von G berücksichtigt.

Ein QBIT-Modell

Wir hatten in Q6 für das ZBIT bereits ein konsistentes Modell entwickelt und eine Darstellung gefunden, die uns Zustandsübergänge und die Zustand-Output Beziehung "rechnerisch", d.h. durch Formeln, zu formulieren ermöglichten. Die Zustände liegen dabei auf einem Einheitskreis in der x-y-Ebene.

Das einfache Qubit-Modell in x-y-Koordinaten mit Drehwinkel w

Für das QBIT-Modell müssen wir die Dreh-Operationen berücksichtigen. Die Einstellungen von "3 Uhr" (entspricht 0º) bis "12 Uhr" (entspricht 90º)  liefern Ergebnisse für die Häufigkeit von L, die sich aufsteigend von 0 bis 1 verteilen. Von 90º bis 180º (9 Uhr) geht es umgekehrt von 1 nach 0. Und bei Einstellungfen von 180º bis 360º wiederholt sich das Geschehen. Wenn wir uns die p(L) Linie in der ZBIT-Modell Grafik ansehen, heißt das eigentlich nur, dass die experimentellen Ergebnisse auf der p(L)-Linie von der Mitte nach oben, dann nach ganz unten und zurück zur Mitte bewegen. Jeder Punkt auf der p(L)-Linie hat aber eine Entsprechung auf dem Einheitskreis - genauer, sogar zwei! (Mit zwei Ausnahmen.) Wir können daher als die Zustände eines QBIT-Modells alle Punkte auf dem Einheitskreis  nehmen. Das umfasst natürlich auch automatische die 8 Zustände aus dem ZBIT-Modell.

Damit bekommen wir als QBIT-Modell-Beschreibung eine Erweiterung des ZBIT-Modells:

  • Die Zustände sind alle Punkte auf dem Einheitskreis, d.h. alle (x,y), für die x² + y² = 1 gilt.
  • Die Output-Werte bilden das Intervall [0,1], interpretiert als Wahrscheinlichkeiten p(L) für das Messergebnis L.
  • Ein Zustand (x,y) ergibt als Output M(x,y) = |y|² = p(L) (wobei hier die das Betrags-Symbol |  | unnötig ist). p(D) ist entsprechend x² = 1-y².
  • R(x,y) = (1,0) und liefert p(L) = 0
  • X(x,y) = (y,x). Wir leiten daraus ab, dass der Output M nach Anwendung von X p(L) = |x|² ergibt.
  • H(x,y) = 1/√2(x+y,x-y). Was ist der Output p(L) direkt nach Anwendung von H auf (x,y)? (Wer Lust hat, usw.)

Wie beschreiben wir die Dreh-Feld Operation G? G "dreht" den Ausgangszustand (1,0) auf dem Einheitskreis entsprechend dem"Dreh-Winkel" (G für Gyro). Dazu müssen wir etwas mathematisch ausholen. Ein Zustand auf dem Einheitskreis (x,y) kann auch durch den Winkel w zum Ausgangspunkt beschrieben werden. Nämlich - da der Radius des Einheitskreises 1 ist - als x = cos(w) und y = sin(w). Damit hat der Modell-Zustand, der durch Drehen um den Winkel w ausgehend vom Zustand (1,0) erreicht wird die Koordinaten (x,y) = (cos(w),sin(w)). Die erfüllen die Gleichung für den Einheitskreis, klar, und das |y|² ist gleich sin(w)². Also setzen wir

  • G(w) = (cos(w),sin(w)), wobei w der Dreh-Winkel von (1,0) aus ist.

Wir können damit das Modell einfach berechnen und den Output, das p(L), für alle Drehfeld-Einstellungen von 0 bis 360 in die Grafik der experimentellen Ergebnisse einzeichnen. Die rote Linie repräsentiert die Funktion sin(w)² und passt (zumindest visuell) hervorragend zu den blauen Punkten. Wir haben damit eine "statistische Bestätigung" unseres Modells.

QBIT-Box Experiment und Modellberechnung von p(L)

Vorhersagen und Erklärungen

Was passiert, wenn wir zwei G hintereinander schalten?
1. R ---- G90 --- G45 ---- M -> 0.5  (Modell), 49:51 Experiment
2. R ---- G45 --- G90 ---- M -> 0.5  (Modell), 52:48 Experiment
3. R ---- G60 --- G45 ---- M -> 0.93 (Modell), 4:96 Experiment (D:L)
4. R ---- G105 --- M -> 0.93 (Modell), 9:91 Experiment (D:L)

Offenbar ist der Effekt zweier Drehungen der gleiche wie eine Drehung um die Summe der Winkel, in der Theorie wie - statistisch - im Experiment.

Wir wissen, dass X so wirkt, dass die Koordinaten vertauscht werden.
5. R ---- G60 ---- M -> 0.75 (Modell), 22:78 Experiment (D:L)
6. R ---- X ---- G60 ----M -> 0.25 (Modell), 74:26 Experiment (D:L)
7. R ---- G60 ---- X ----M -> 0.25 (Modell), 75:25 Experiment (D:L)

Das X vor oder nach der Drehung vertauscht die Koordinaten und damit die theoretischen Wahrscheinlichkeiten für D und L.

Nun noch ein paar Kombinationen mit H:

8. R ---- G60 ---- H ---- H ---- M -> 0.75 (Modell), 24:76 Experiment (D:L)
Das entspricht dem Ergebnis von Versuch 5. D.h. das doppelte H hebt sich auf - wie wir das ja schon aus dem ZBIT-Modell kennen. Aber was macht ein einzelnes H?

9. R ---- G60 ---- H ---- M -> 0.067 (Modell), 93:7 Experiment (D:L)
Vorhersage und Experiment passen recht gut zusammen. Wir können aber das Ergebnis aus dem Modell "errechnen", indem  wir die Formeln anwenden.

Die Drehung des Ausgangszustands (1,0) um 60º liefert den Punkt
(cos(w),sin(w)) mit w=60º
auf dem Einheitskreis. H bedeutet, darauf die Formel 1/√2(x+y,x-y) anzuwenden, also
H(cos(w),sin(w)) = 1√2(cos(w)+sin(w),cos(w)-sin(w)).
Dieser Zustand wird gemessen (in Serie von 100). Mit M bedeutet das
p(L)=|y|²=1/2*(cos(w)-sin(w))².
Das ergibt (berechnet z.B. mit Wolfram Alpha) p(L) = 0.0669. Die Modell-Zustände, -Übergänge und -Outputs kann man berechen - die Ergebnisse der QBIT-Box  dagegen NICHT!

10. R ---- H ---- G60 ---- M -> Liefert in Experiment-Serien Ergebnisse um 8:92 für (D:L). Das sieht aus wie das Ergebnis von 3., oben.
Ob das stimmt, können wir per Modell herausfinden. R setzt den Anfangszustand (1,0), H macht daraus 1/√2(x+y,x-y)=1/√2(1,1), das kennen wir schon. Dieser Punkt liegt auf dem Einheitskreis mit dem Winkel 45º, da die x- und y-Koordinate gleich sind. D.h. H macht mit (1,0) das Gleiche wie eine Drehung um w=45º. Anschließend "dreht" G60 weiter auf 45+60=105º. Und das ist genau das, was wir in Versuch 3. hatten. Damit ist das theoretische Ergebnis wieder p(L)=0.93, passend zum Experiment. Aber Achtung! H ist nicht generell mit G45 gleich zu setzen. H ist keine Drehung um einen festen Wert. Wo H(x,y) liegt, hängt von (x,y) ab. Wer Lust hat kann überlegen, was passiert, wenn wir nach R erst ein X einsetzen (und das in einen Kommentar schreiben).

Auf diese Weise kann man viele weitere 1-Qubit Algorithmen formulieren und per Modell untersuchen. Leider ist der Gegenstand unsere Experimente nur ein virtueller. Der G.E. hat uns keine Handhabe gegeben, Experimente anders als immer mit der gleichen Routine zu machen: Kühlen, Reset, Operationen anwenden, Messen und das Ergebnis im Hell/Dunkel-Feld beobachten. Protokollieren und Statistik machen. (Wer wissen will, wie die Ergebnisse der obigen Mess-Serien zustande gekommen sind, kann das im nächsten Blog-Abschnitt kennen lernen.)

Die Vielfalt der Bezeichnungen

Eines hat in der Abfolge der Modellierungsansätze vermutlich irritert: die offensichtliche Beliebigkeit der Darstellung und Bezeichnung der Modell-Zustände. Nun, das hatte einen guten Grund. Es sollte zeigen, dass es

(a) verschiedene Modell-Beschreibungen für die gleiche Sache gibt,
(b) keine davon per se die "Wahre" ist und
(c) es der "Sache" egal ist, welche Beschreibung wir wählen, sofern sie nicht im Widerspruch zu den Experimenten steht.

Wir können daher bei der Modellwahl auf andere Eigenschafte achten, z.B. ob die Begriffe leicht zu verstehen oder zu merken sind, ob man damit leicht operieren bzw. rechnen kann, oder ob uns eine der Möglichkeiten einfach mehr Spaß macht, besser "in der Hand liegt".

In der Qubit-Algorithmik findet man daher mindestens 3 Standard-Beschreibungsansätze für Qubits. Wir werden darauf später teilweise noch eingehen können.

Zunächst wollen wir aber mal in unserem eigenen Zoo von Modellen Klarheit schaffen, vom BIT bis zu  QBIT. Dazu zeigt folgende Tabelle, welche Zustandsbezeichnungen in den verschiedenen Ansätzen sich entsprechen.

Uhr Grad π π/2 x-y-KoS p(L) ZBIT BIT Alice Qubit
3:00 0 0 (1,0) 0 [00] [0] Alice |0>
2:00 30º 1/6 1/3 (√3/2,1/2) 1/4 -- -- --
1:30 45º 1/4 1/2 (1/√2,1/√2) 1/2 [01] -- Charly |+>
1:00 60º 1/3 2/3 (1/2,√3/2) 3/4 -- -- --
12:00 90º 1/2 1 (0,1) 1 [11] [1] Debbie |1>
9:00 180º 1 2 (-1,0) 0 -- -- --
6:00 270º 3/2 3 (0,-1) 1 -- -- --
4:30 315º 7/4 7/2 (1/√2,-1/√2) 1/2 [10] -- Bob |->
hh:mm φ θ (x,y) |y|² -- -- --  x|0>+y|1>

Jede Spalte entspricht einer der Beschreibungsmöglichkeiten, die Einträge in einer Zeile entsprechen einander. Die erste Spalte zeigt Werte unseres Uhren-Bildes, mit dem Ausgangszustand auf 3 Uhr. Die zweite Spalte zeigt die entsprechenden Werte in Grad, gegen den Uhrzeigersinn. Statt Grad-Angaben kann man auch den Kreis mit Winkelangaben in π kennzeichnen. Die Spalte x-y-KoS gibt die entprechenden Koordinaten wieder, p(L) die zugehörige Wahrscheinlichkeit für L. Im ZBIT- und BIT-Modell hatten wir nur 4 bzw. 2 Zustände gekennzeichnet. Für das ZBIT die Zustände sogar mal mit Namen gekennzeichnet. Die letzte Spalte und die Spalte π/2 sind Zustandsschreibweisen, die wir noch kennen lernen werden. Sie gehören zu den erwähnten Standard-Beschreibungen für Qubits. Wenn man mal nicht weiß, was was ist, hat man hier eine Tabelle zum Nachschlagen.

Die letzte Zeile stellt die verwendeten Symbole für einen allgemeinen Zustand in der jeweiligen Schreibweise dar. Es fällt auf, dass es für das ZBIT- und BIT-Modell keinen "allgemeinen" Zustand gibt. Es sind stets die 4 bzw. 2 Zustände und nichts "dazwischen".

Wir sind jetzt in der Qubit-Welt angekommen, zumindest in einer der Qubit-Welten. Mit einem Qubit kann man algorithmisch recht wenig anfangen, vergleichbar einem Programm mit nur einer Variablen. Interessanter werden Qubit-Algorithmen, die mehrere Qubits umfassen - in einem sog. Qubit-Register. Das werden wir - nach einer kleinen Pause natürlich - im nächsten Abschnitt kennen lernen. Und zwar durch kleine praktische Beispiele von der Art "Hello Qubit World" in Q2, ausgeführt auf dem IBM Q Experience Quantencomputer (bzw. dem Simulator).

Hier geht's weiter.

Ach ja, wofür steht wohl QBIT auf der Box? Vorschläge gerne in den Kommentarfelden.


Zur Ausbreitung der Corona-Infektionen: Wachstumsmodelle

Die Corona-Krise, ihre Bewertung und die Maßnahmen zu ihrer Bewältigung sind seit Wochen das alles beherrschende Thema in den Medien. Dabei kommt neben den medizinischen, biologischen, wirtschaftlichen, gesellschaftlichen, rechtlichen und ethischen Fragen, die das Virus aufwirft, auch die Mathematik ins Spiel. Es sind mehrere Themenkomplexe, bei denen die Mathematik gefragt ist und adressiert wird: bei der Statistik der Datenerfassung und –auswertung, bei der Modellierung der Ausbreitung und der Ausbreitungsgeschwindigkeit der Infektionen, aber auch bei der Modellierung der wirtschaftlichen Auswirkungen des Shutdowns. Ferner spielen u.a. Methoden des Maschinellen Lernens bei der Suche nach einem Impfstoff oder nach Medikamenten eine wesentliche Rolle.

Wir wollen hier nur den Komplex der Ausbreitung der Infektionen ansprechen. In den Medien spielt dabei das Modell des exponentiellen Wachstums eine besondere Rolle. Außer von Virologen und Epidemiologen hören wir es von Vertretern aller Medien und von Politikern. Mathematiker kommen in der Öffentlichkeit kurioserweise kaum oder eher am Rande zu Wort.

Zur Charakterisierung der Ausbreitung der Infektionen werden in den Medien eine Vielzahl von Kurven gezeigt, oft erstaunlich nichtssagende Kurven, deren Sinn von Laien nicht und Experten nur mit Mühe verstanden werden können. Manche der Kurven werden in einem Achsenkreuz gezeigt, ohne dass die Achsen bezeichnet oder erläutert würden, so dass nicht klar wird, was die Kurven eigentlich veranschaulichen.

Zum Beispiel wurden in der anfänglichen Berichterstattung in den Medien zur Erklärung, warum eine Verlangsamung der Virus-Ausbreitung (durch Isolierung, Kontaktreduktion, soziale Distanzierung) medizinisch sinnvoll und notwendig ist, oft jeweils zwei Kurven gezeigt, deren Form an „Normalverteilungen“ aus der Statistik erinnern (eine spitze und eine flache Kurve). Zu diesen Kurven wird erklärt, dass sie einerseits die schnelle, ungebremste Ausbreitung (die spitze Kurve) und andererseits eine systematisch verlangsamte, zeitlich gedehnte Ausbreitung der Infektionen (die flache Kurve) beschreiben. Dabei soll eine waagerechte Linie, unter der die flache Kurve verläuft, die Kapazitätsgrenze für Intensivbehandlungen in deutschen Krankenhäusern charakterisieren. Diese Kurven haben aber keine präzise bezeichnete mathematische Bedeutung, sondern eher symbolischen Charakter.

Um etwas mehr Klarheit in die Vielfalt der Darstellungen zu bringen, wollen wir hier ein paar allgemeine Worte über „mathematische Wachstumsmodelle“ sagen. Dabei wenden wir uns ganz bewusst an den mathematisch nicht besonders versierten oder interessierten Leser.

Die drei wichtigsten Wachstumsmodelle sind das lineare, das exponentielle und das logistische Modell. Um sich einen Eindruck, eine Idee dieser drei Modelle zu verschaffen, braucht man nur einen Blick auf die Form der zugehörigen Wachstumskurven zu werfen:

Von diesen drei Modellen ist das lineare Wachstumsmodell das einfachste und alltäglichste. Trotzdem gehen wir hier zunächst auf das Modell des exponentiellen Wachstums ein, weil von diesem seit dem Beginn der Corona-Krise in den Medien fast ausschließlich die Rede ist.

Exponentielles Wachstum ist eigentlich leicht zu verstehen: Wenn sich z.B. irgendeine Menge täglich verdoppelt, dann haben wir es mit exponentiellem Wachstum im engsten Sinne zu tun. Sich vorstellen kann man das ja sofort. Verblüffend ist aber, wie schnell die Menge nach einer eher ruhigen Startphase anwächst.

Veranschaulicht wird dieses Anwachsen gern durch die indische Legende vom Schachbrett mir den Reiskörnern. Bei Verdoppelung der Anzahl der Reiskörner von einem Feld des Schachbretts zum nächsten sieht das Wachstum am Anfang harmlos aus. Aber am Ende, nachdem alle 64 Felder belegt sind, übersteigt die Menge der Körner alle Vorstellungen. Allein auf dem letzten Feld müssten die Reisernten der ganzen Welt von vielen hundert Jahren untergebracht werden.

Eine andere Geschichte, das Gleichnis vom Lilienteich, soll die Bedrohlichkeit des exponentiellen Wachstum deutlich machen: In einem Teich wächst eine Linie täglich auf die doppelte Größe an. In den ersten Tagen ist die Ausbreitung scheinbar völlig bedeutungslos, so geht es weiter, und auch am 29.Tag ist „nur“ der halbe See von Lilien bedeckt. Aber dann, am 30. Tag, ist der See vollständig zugewachsen, und alles Leben im See erstickt…

Nun muss es bei exponentiellem Wachstum nicht eine tägliche Verdoppelung der betreffenden Menge sein, es kann auch ein anderer Zeitraum sein, der zu einer Verdoppelung führt, z.B. eine Verdoppelung alle 4 Tage oder alle 10 Tage.

Nur am Rande sei erwähnt, dass wir es z.B. bei der Zinsesverzinsung von Kapital (wenn die Zinsen nicht abgeschöpft, sondern dem Kapital hinzugefügt werden) ebenfalls mit exponentiellem Wachstum zu tun haben: Bei einem Jahreszinssatz von zum Beispiel 5 % würde sich das Kapital bei Zinsesverzinsung ungefähr alle 14 Jahre verdoppeln.

Die Situation verändert sich aber grundlegend, wenn der Zeitraum, in dem die Verdoppelung stattfindet, nicht konstant ist, sondern sich laufend verändert. Wenn also z.B. der Verdoppelungszeitraum erst 4 Tage, dann – nach einigen Wochen – nur noch 6 Tage, dann – noch einige Wochen später – vielleicht nur noch 10 Tage beträgt usw.

In einem solchen Fall, wenn der Zeitraum, in dem die Verdoppelung stattfindet, sich dauernd verändert (vergrößert), haben wir es nicht mehr mit exponentiellem Wachstum im engeren Sinne zu tun, sondern mit einem möglicherweise deutlich komplizierteren Anwachsen. Über einen größeren Zeitraum betrachtet, sieht das Wachstum dann vielleicht eher wie lineares Wachstum aus. Konkret: Wenn sich der Zeitraum, in dem die Verdoppelung stattfindet, ebenfalls verdoppelt, also von 4 auf 8 Tage, dann auf 16, danach auf 32 Tage usw. anwächst – dann ist das global gesehen kein exponentielles, sondern lineares Wachstum.

Lineares Wachstum lässt sich schnell abhandeln: Es wird durch eine gerade Linie charakterisiert. Es ist das uns vertrauteste Wachstumsmodell: Der Preis einer Ware steigt in der Regel linear mit der Menge der Ware, der Arbeitslohn sollte linear mit dem Zeitraum anwachsen, in dem die Arbeit ausgeübt wird usw. Bei allem, was wir in der Schule und im Alltag mit dem Dreisatz-Prinzip ausgerechnet haben und ausrechnen können, haben wir es mit linearen Beziehungen, mit linearem Wachstum zu tun.

Logistisches Wachstum als alternatives Modell zu exponentiellem Wachstum

Wie im Beispiel der Schachbrettlegende wächst unbegrenzt exponentielles Wachstum schließlich dramatisch schnell an, es geht sehr schnell ins quasi „Unendliche“.

In der Wirklichkeit ist exponentielles Wachstum aber nur theoretisch unbegrenzt, es geht praktisch eigentlich immer in eine andere Form des Wachstums über. Neben dem gerade behandelten einfachen linearen Wachstum ist ein sehr wichtiges, besonders realistisches Wachstumsmodell das logistische Wachstum.

Die obige Kurve zum logistischen Wachstum zeigt (von links nach rechts) das Charakteristische des logistischen Wachstums: Zu Beginn, in der Startphase, verhält sich die Kurve wie beim exponentiellen Wachstum, ändert dann aber – an einem „Wendepunkt“ – ihre Richtung, wird flacher und nähert sich immer mehr einer waagerechten Geraden an. Das Wachstum wird durch diese Gerade begrenzt. In der Realität ist der Übergang vom exponentiellen Wachstum in begrenztes Wachstum in aller Regel dadurch bedingt, dass Ressourcen beschränkt sind und aufgebraucht werden

Auch auf die Corona-Ausbreitung bezogen, haben wir es langfristig mit logistischem Wachstum zu tun: Wenn die senkrechte Achse die Gesamtzahl aller Infizierten (einschließlich der bereits Genesenen) beschreibt, ist klar, dass weitere Infektionen spätestens dann ausgeschlossen sind, wenn alle Individuen infiziert sind oder waren (und eine zwei- oder mehrmalige Infektion ausgeschlossen ist). Nach den Erkenntnissen der Epidemiologie ist sogar zu erwarten, dass eine solche Begrenzung praktisch schon erreicht wird, wenn etwa 70% der Individuen infiziert sind oder waren. (Man spricht dann auch von „Herdenimmunität“.)

Die derzeitigen Maßnahmen zur Kontaktminimierung (im April 2020) zielen dagegen darauf ab, zu erreichen, dass die sogenannte Reproduktionszahl R (möglichst deutlich) kleiner als 1 ist, das heißt dass jedes Infizierte Individuum im Mittel (möglichst deutlich) weniger als ein weiteres Individuum mit dem Virus infiziert. . Wenn das gelingt, wird die Gesamtzahl der gleichzeitig Infizierten auf Dauer (deutlich) abnehmen. Wenn man die Reprodukionszahl R, ihre zeitliche Entwicklung und die dadurch bedingte Ausbreitung der Infektion durch Kurven veranschaulicht, haben diese Kurven eine andere Bedeutung als die oben diskutierten Kurven und Modelle, weil sich R nicht auf die Gesamtzahl der Infizierten, sondern nur auf die jeweils aktuell Infizierten (ohne die bereits Genesenen und Verstorbenen) bezieht. Selbst in solchen Fällen, bei denen die in den Medien präsentierten Kurven eine mehr oder weniger präzise Bedeutung haben, muss man also genau hinsehen und bei der Interpretation der Kurven vorsichtig sein.

Resumee

Für die Ausbreitung der Corona-Infektion ist also das exponentielle Modell immer nur kurzfristig oder für eine bestimmte Zeitspanne relevant: die Wachstumsraten ändern sich, insbesondere als Folge der getroffenen Maßnahmen, von Tag zu Tag. Global, auf lange Sicht gesehen, wird das Wachstum in ein logistisches Wachstum übergehen. Die getroffenen Maßnahmen zielen jedenfalls darauf ab, dass sich ein exponentielles Wachstum (z.B. in einer „zweiten Welle“) keinesfalls wieder einstellt.

Viele Fragen zum Corona-Virus, u. a. zu seiner Übertragbarkeit, zu seiner Gefährlichkeit, zu seiner Ausbreitungsdynamik, zu seiner Bekämpfung sind heute noch nicht oder nicht vollständig geklärt, und auch anerkannte Experten äußern sich nicht einheitlich über diese Fragen. Insbesondere die Corona-Datenerfassung ist unübersichtlich und uneinheitlich. Über die Gesamtzahl der Infizierten (die „Dunkelziffer“) wird viel spekuliert. Die zugehörige Statistik ist infolgedessen unsicher und oft fragwürdig. Im Hinblick auf die Aufklärung der Öffentlichkeit ist es umso wichtiger, dass das, was man sicher weiß, über die Medien klar und unmissverständlich kommuniziert und veranschaulicht wird, und möglichst nur das.

 


Q6 Zwischenspiel - ZBIT-Spielereien

Hier wollen wir mit dem verbesserten ZBIT-Modell aus Q5 ein wenig rumspielen, um mit dem Modell und den Definitionen ein wenig vertrauter zu werden. Um so leichter fällt dann der letzte (kleine) Schritt zum Qubit. Wegen des letzten Abschnitts ist dieser Blog etwas länger geraten. Dafür führt er uns aber zu einer Modell-Darstellung, die schon die für das Qubit-Modell sein wird. Wer keine Lust hat zum Spielen, kann auch einfach nur einen Kaffee trinken und gleich mit dem nächsten Blog weitermachen.

Wir hatten schon festgestellt, dass die inneren Zustände eigentlich beliebig wählbar sind, vorausgesetzt, die Maschinen-Tabellen (Output und Zustandsübergänge) sind konstistent.

1. Alice, Bob, Charly und Debbie

Statt [00] usw. können wir z.B. Namen nehmen:

Alice, Bob, Charly und Debbie statt [00], [10], [01], [11]. Wenn wir die vier dann als Ecken eines Quadrats aufstellen, etwa in der Sporthalle, können wir das Modell als Ballspiel beschreiben:

  1. Jede Runde beginnt bei Alice, sie hat den Ball (Operation R)
  2. Jeder spielt den Ball entsprechend den Regeln von X und H.
  3. Jeder ist dabei frei, welche der Regel sie oder er "werfen" will
  4. Irgendwann pfeift der Referee ab (M)

Die Grafik illustriert das Set-up. Die Pfeile zeigen, wie X und H gespielt werden dürfen. Da die Personen formal Zustände sind, zeigt die Grafik ein sog. Zustandsüberführungs-Diagramm, ein Wort, das man üben muss.

Wir haben noch nicht gesagt, was D, L und P sein sollen. Da wir die inneren Zustände und Übergänge beim Ballspiel beobachten, könnten wir trivialerweise festlegen: D, wenn der Ball bei Abpfiff bei Alice ist, L, wenn er bei Debbie ist und P, wenn er bei einem der beiden anderen ist. Das ist nicht beonders interessant.

Wie wäre es, wenn bei Abpfiff der Ball in einen Basketball-Korb geworfen werden muss? Das ganze Spiel findet hinter einem Vorhang statt, sodass wir es nicht sehen können. Allein den Wurf auf den Korb können wir sehen. Dabei bedeutet D, dass der Ball niemals versenkt wird (Alice), L, dass er mit Sicherheit reingeht (Debbie), und P, dass er manchmal trifft und manchmal nicht, im Verhältnis 1:1.

Fragen: Können wir herausfinden, wer den Ball zum Korb wirft? Wie wäre es, wenn wir dem Team bzw. dem Referee Spielpläne vorgeben würden (Algorithmen)? Wie könnte ein "autonomes" Spiel aussehen? D.h. jeder Spieler entscheidet (zufällig) welchen der möglichen Würfe (R, X, H, M) er oder sie macht.

Wer Lust hat, kann Überlegungen oder Antworten als Kommentar einfügen.

Nun gut, lassen wir die vier weiter spielen und wenden uns einer Darstellung zu, mit der wir das ZBIT-Modell simulieren können.

2. Ein ZBIT-Box Simulationsmodell

Wir haben im Beitrag "Etwas ist anders - Hello Qubit World" die Partitur eines QuBit-Algorithmus gesehen - ohne zu wissen, worum es geht. Solche Partituren können, wenn sie fehlerfrei sind, von Quanten-Computern oder auch von QC-Simulatoren abgearbeitet werden. Es wäre doch interessant, wenn wir die ZBIT-Experimente in diese Form bringen könnten und sie dem Simulator vorlegen könnten.

Da die Experimente mit den ZBIT- und BIT-Modellen schon in Anlehnung an die "Partitur-Form" beschrieben wurden, sollte es uns tatsächlich leicht fallen.

Die Modell-Beschreibung für den QC-Simulator ändert sich kaum: X und H werden vom Simulator "verstanden", das R gibt es nicht explizit, sondern jede Partitur beginnt mit dem Ausgangszustand.  Der wird im Simulator mit |0> gekennzeichnet statt mit [00], aber die Namen der inneren Zustände sind ja unwesentlich. (Was |0> bedeutet, werden wir später sehen.) Das Anzeige-Symbol ("Tacho-Nadel") steht für die Operation M (Messen).

Anders als bei den bisherigen Modell-Beschreibungen können wir nichts über die inneren Zustände des Simulators wissen. Die Zeile der Zustandsübergänge in den bisherigen Experimenten ist nicht verfügbar - jedenfalls beim QC. Die Messergebnisse des Simulators können '0' oder '1' sein, das entspricht dem D und L im ZBIT-Modell. Was wir für P bekommen sehen wir im Experiment.

Wir nehmen das ZBIT-Vorhersage-Experiment aus dem vorausgehenden Blog:

R ------ H ----- X ----- H ---- H ----- M -> P

und bilden es ab auf den QC-Simulator (hier: IBM Q Experience Circuit Composer).

Mit dem QC-Simulator können wir dieses Experiment einmal durchführen und erhalten:
{'0': 1}. Wir wiederholen und bekommen wieder ein {'0': 1}, dann ein {'1': 1}. Das bedeutet, die ersten drei Experiment-Durchläufe resultierten jeweils in einer  '0', bzw. einer  '1'. Wir bekommen also D oder L als Output. Wie bei der ZBIT-Box machen wir jetzt Mehrfach-Experimente, z.B. eine Serie von 50 Durchläufen. Das Ergebnis:

also 28 mal L und 22 mal D in unserer ZBIT-Interpretation.

Das sieht schon recht spannend aus. Im Prinzip könnten wir alle bisherigen Experimente mit dem BIT-Modell und dem ZBIT-Modell in dieser Weise simulieren. Damit kommen wir dem Konzept von Qubit-Algorithmen schon sehr nahe.

Und wir gewinnen eine wichtige Erkenntnis: ZBIT (das verbesserte) und BIT sind Teilmodelle des - hier noch unbekannten - Qubit-Modells.

Wer Lust hat, kann nicht nur Fragen und Antworten als Kommentar unten anfügen, sondern auch unter IBM Q Experience sich registrieren und schon mal im Circuit Composer stöbern. Wir schauen uns das in einem späteren Blog noch mal näher an. Eine ähnliche Umgebung bietet auch Google an mit Cirq.

Nun wenden wir uns einer Darstellung zu, mit der wir das ZBIT-Modell  mit einfachen Formeln berechnen können.

3. Ein Modell mit Formeln

Wir wollen nun versuchen, die Zustände so zu definieren, dass man mit ihnen "rechnen" kann. Statt in den Automaten-Tabellen die Zustandsübergänge nachzusehen, wollen wir sie mit einfachen Formeln berechnen können. Das gleiche für die Outputs.

Eine naheliegende Idee wäre es, die Ziffern in den Zuständen [00] usw. tatsächlich als Zahlen aufzufassen und dazu auch die Output-Ergebnisse in Zahlen umzuwandeln:  D entspricht 0, L entpricht 1, und P dem Wert 1/2. Diese Werte können verstanden werden als Wahrscheinlichkeiten, dass wir Licht sehen, wenn wir die Klappe öffnen. Wir schreiben dafür p(L).

Allerdings hatten wir [00] usw. eigentlich nur als "Label" für die Zustände eingeführt und  nicht als arithmetische Größen. Daher wäre es ein erstaunlicher Zufall, wenn wir damit ein konsistentes arithmetisches Modell bilden könnten.

Tatsächlich geht das aber, bis zu einem gewissen Punkt. Wer sich davon überzeugen will: es gibt einen Annex zu Q6, in dem das dargestellt wird. Wenn wir allerdings das Modell erweitern wollen, z.B. um Zustände, die p(L) = 1/4 als Output liefern, gibt es Schwierigkeiten.

Wir geben uns daher etwas mehr Freiheit bei der Definition eines rechnerischen Modells, indem wir die Zustände ("Labels"), in ein x-y-Koordinatensystem einbetten. (Wir erinnern uns, dass wir mit den zwei-ziffrigen Zuständen in Q5 so etwas wie 2-dimensionale Zustände eingeführt hatten.) Die Zustände werden dann zu Punkten in der x-y-Ebene.

Wir halten die Bezeichnungen [00] bzw. Alice zunächst einmal bei. Sie benennen die Punkt, so wie man Punkte A, B und C eines Dreiecks in der Ebene benennt und mit Koordinaten versieht. Trotzdem können die 0-en und 1-en etwas verwirrend wirken. Die Punkte werden mit ihren Koordinaten in normalen Klammern geschrieben, also z.B. (1,0), die [00] in eckigen Klammern sind die Label der Punkte, ebenso wie die Namen Alice etc.

Das  Einfachste ist, die beiden Zustände [00] und [11] - die ja auch die BIT-Zustände repräsentieren - auf die Koordinaten-Achsen zu platzieren. [00] als Punkt auf der x-Achse bei 1: (x,y) = (0,1). Und [11] entsprechend auf der y-Achse: (x,y) = (1,0). Das Diagramm zeigt wie.

Wohin gehört Bob?

Wo würden wir dann die Zustände [10] und [01] positionieren? Nun, das können wir bereits "ausrechnen". Schauen wir uns dazu zunächst die passenden Formeln für die Wirkung der Operatoren R, X und H an.

R ist einfach: R(x,y) = (1,0). Das Reset überführt jeden Zustand in den Ausgangszustand, der jetzt die Koordinaten (0,1) hat.

Auch X ist nicht schwer: X(x,y) = (y,x). X als "Switch" vertauscht die Koordinaten. Das passt schon mal für die beiden vorgegeben Zustände (1,0) <-> (0,1).

Wir haben uns noch nicht um den Output gekümmert. Der Output von (1,0) (i.e. [00]) muss p(L) = 0 sein, der vom (0,1) (i.e. [11]) entspechend p(L) = 1. Es liegt daher nahe, die y-Koordinate als p(L) zu übernehmen. Die x-Koordinate wäre entsprechend als Wahrscheinlichkeit für D zu interpretieren: p(D).

Hieraus folgt direkt und zwingend: p(L) + p(D) = 1.

Damit bekommen wir folgende Bedingungen für die Zustände [10] und [01]:
(1) Sie müssen so positioniert werden, dass die Summe ihrer beiden Koordinaten 1 ergeben.
(2) Der zugehörige Output muß 1/2 ergeben;  die y-Koordinate muss also 1/2 sein.
(3) Wegen der Wirkung von HH, müssen H[00] = [01] und H[11] = [10] unterschiedliche Koordinaten haben.

Man sieht sofort, dass diese Bedingungen unvereinbar sind: [01] kann mit den Koordinaten (1/2,1/2) die Bedingung (1) und (2) erfüllen. Es gibt aber keinen weiteren Punkt, der (1) und (2) erfüllt.

Wir ändern daher die Output-Definition: M (x,y) = p(L) = |y|, d.h. die Wahrscheinlichkeit für L ist der Absolutbetrag von y. Die Bedingungen (1) und (2) werden dann zu
(1') Die Summe der Beträge der Koordinaten muss 1 sein: |x|+|y| = 1. Und
(2') Der Betrag der y-Koodinate muss 1/2 sein

Wenn wir dann [10] mit den Koordinaten (1/2,-1/2) versehen, werden alle drei Bedingungen erfüllt. (Siehe Grafik.)

Das ZBIT-Modell einem Koordinatensystem

Weiter stellen wir fest, dass aus der Anwendung X und H auf schon bekannte Zustände neue Punkte hervorgehen, die wir ebenfalls als Zustände zulassen müssen.  So muß z.B. mit (1/2,-1/2), den Koordinaten für [10],  auch X(1/2,-1/2) = (-1/2,1/2) = -(1/2,-1/2) ein zulässiger Zustand sein. Wenn H(1/2,-1/2) wieder (0,1) sein soll (doppelte H Anwendung auf [11]), dann muss H(-1/2,1/2) = (0,-1) zulässig sein. Und X(0,-1) = (-1,0) = -(1,0) ebenso. Das Diagramm zeigt die Zustände als Punkte, die Pfeile für die Operatoren sind wegen der Übersichtlichkeit nicht eingezeichnet. Man kann aber, wenn man Lust hat, selbst versuchen, diese Zustandsübergänge einzuzeichnen (gedanklich), soweit es geht.

Das ist zunächst einmal überraschend: Wenn wir die 4 Zustände des ZBIT-Modell durch Punkte im (x,y)-Koordinatensystem darstellen wollen, erweitert sich das Modell zwangsläufig auf 8 Zustände! In unserem ZBIT Ball Game oben, würden dann Alice, Bob, Charly und Debbie jeweils einen Zwilling bekommen, Twin-Alice usw. Eigentümlich - aber niemand zwingt uns, bei einem Modell für die ZBIT-Box mit nur 4 Zuständen auszukommen. Vier ist das Minimum, aber 8 geht auch. Im Diagramm sind die "Twins" als helle Punkte eingezeichnet. Frage: Welcher Punkt ist Twin von wem?

Damit haben wir für das Koordinaten-basierte Modell:

  • Die Zustandsmenge
  • Die Wirkung von R und X als Formel
  • Die Zustand -> Output Abbildung M mit der Interpretation als p(L), Wahrscheinlichkeit für L als Messergebnis

Was fehlt, ist die Formel für H. Wir hatten festgelegt, dass (1,0) (Label [00]) durch H in (1/2,1/2) überführt werden soll und (0,1) (Label [11]) in (1/2,-1/2). Eine naheliegende Formel für H wäre: H(x,y) = 1/2 (x+y, x-y). Sie liefert für (1,0) und (0,1) genau das, was sie soll. Aber wie sieht es mit (1/2,1/2) und (1/2,-1/2) aus. H auf diese Zustände angewandt müsste ja wieder (1,0) bzw. (0,1) ergeben.

Jedoch: H(1/2,1/2) = 1/2 (1/2+1/2, 1/2-1/2) = 1/2 (1,0). Den gleichen Widerspruch erhalten wir für (1/2,-1/2). Der Faktor 1/2 macht die Inkonsistenz aus. Wenn wir allerdings den Faktor 1/2 in der Definition von H weg lassen, bekommen wir für (1,0) und (0,1) schon gleich falsche Ergebnisse.

Was tun? Vielleicht etwas dazwischen - zwischen 1/2 und 1? Wie es die Mathematiker gerne machen, wenn man sich nicht entscheiden kann, setzt man anstelle von 1/2 eine Variable, sagen wir a, und versucht, dafür einen passenden Wert zu bestimmen. Das ist sehr elegant. Probieren wir also:  H(x,y) = a*(x+y,x-y).

H(1,0) ergibt dann nicht mehr (1/2,1/2) sondern (a,a), was immer a auch ist. Entsprechend H(0,1) = (a,-a). Wenn wir darauf wieder H anwenden, bekommen wir H(a,a) = a*(a+a,a-a) = a*(2a,0) und H(a,-a) = a*(a+(-a),a-(-a)) = a*(0,2a). Andererseits muss H(a,a) = (1,0) sein, also a*2a = 2a² = 1 oder a = 1/sqrt(2). Das klappt auch mit der zweiten Bedingung. Très chic !

Allerdings stehen wir damit wieder am Anfang. Wir müssen die drei Spiegelpunkte oben wieder neu festlegen. Aber dieses Mal lohnt sich die Spielerei; denn wir haben hiermit automatisch die grundlegenden Komponenten für ein Qubit-Modell in Q7 abgeleitet.

  • Die 8 Zustände sind (1,0), (0.1), (-1,0), (0-1) und (a,a), (-a,a), (-a,-a), (a,-a) mit a = Wurzel aus 1/2. Alle diese Zustände liegen auf einem Kreis mit Radius 1.0 im x,y-Koordinatensystem. Sie erfüllen die Bedingung x² + y² = 1, die Gleichung des Einheitskreises.
  • R und X sind genau wie zuvor definiert, und H als H(x,y) = a*(x+y,x-y).
  • Wie ist die Zustand-Output Beziehung? Jetzt ergibt M(x,y) = y² das p(L), die Wahrscheinlichkeit für L bei einer Messung. Und p(D) ist entsprechend x² = 1-y², was ja für alle Zustände auf dem Einheitskreis stimmt.

Das Diagramm zeigt das ZBIT-Modell mit diesen Festlegungen.

ZBIT-Modell mit konsistenten Zuständen im x-y-Koordinatensystem

Der letzte Abschnitt war sicher keine einfache Spielerei mehr. Aber wir haben es geschafft. Und, wie wir sehen werden, gleichzeitig DAS Werkzeug für Qubit-Algorithmen gefunden.

Frage: Wie würde das ZBIT Ball Game aussehen, wenn wir die vier neuen Spieler ins Feld bringen würden -  nennen wir sie Twin-Alice, Twin-Bob, Twin-Charly und Twin-Debbie? Wer Lust hat usw.

Im nächsten Blog, versprochen, kommen wir aber zum QuBit-Modell - zumindest in einer ersten Form.

Fortsetzung folgt - Stay tuned!