Goethe, Trump und die Mathematik

Zur Bedeutung der Mathematik in der digitalen Bildung

Goethe und Trump in einem Atemzug? Eines der größten literarischen Genies der Geschichte und die Inkarnation der demonstrativen Ignoranz  – die haben doch gar nichts gemeinsam, sollte man meinen. Leider doch: Beide hatten und haben – vorsichtig formuliert - ein sehr distanziertes Verhältnis zur Mathematik und zur mathematischen Wahrheit. Bei Trump bedarf das vielleicht keiner genaueren Erläuterung, weil man weiß, wie er ganz allgemein mit der Wahrheit und mit  Erkenntnissen der Naturwissenschaften umgeht. Aber von Goethe, der – wie er selbst sagte – mehr Zeit mit seinen naturwissenschaftlichen Studien verbracht hat als mit seiner Dichtung und zum Beispiel auf seine Farbenlehre besonders stolz war, da verblüfft die Distanz zur Mathematik und zu mathematisch formulierten physikalischen Gesetzen doch sehr. Und es verwundert vielleicht noch mehr, dass Goethe sich in Spottversen über Newton mit seiner Theorie des aus den Spektralfarben zusammengesetzten weißen Lichts lustig gemacht hat; Goethe hatte auch vor den großen Namen antiker Mathematiker wie Pythagoras wenig Respekt.

Wir wollen der Frage, was Goethe zu dieser Geringschätzung der Mathematik veranlasst hat, hier nicht weiter nachgehen <Hinweis auf Forschbach und Weizsäcker?>. Uns interessiert vielmehr die Frage, was heute los ist. Heute ist geradezu alles, was wir in der Welt an prinzipieller und an empirischer Erkenntnis gewinnen und an Innovation erleben, wesentlich durch die Mathematik geprägt: jede technische und naturwissenschaftliche Entwicklung, jedes Gerät, jeder Algorithmus. Das hat aber nicht etwa zur Folge, dass die heutigen Menschen in ihrer Mehrheit von der Mathematik fasziniert wären - bei den meisten, jedenfalls bei sehr vielen Menschen lösen mathematische Themen eher Unbehagen und unangenehme Erinnerungen an die Schule aus als Interesse und Begeisterung. Und auch heute erlebt man in der Öffentlichkeit, in TV-Shows, in den Medien, ja sogar in der Politik noch immer die augenzwinkernde Koketterie mit dem zur Schau getragenen und durch schlechte Schulleistungen unter Beweis gestellten Desinteresse  an Mathematik.

Was sind die tieferen Gründe für dieses Desinteresse, diese Abneigung, für die Tatsache, dass Mathematik bis heute als das „Hassfach“ in der Schule gilt? Ist es noch die historisch und kulturell bedingte Orientierung an den Themen der traditionell klassischen Bildung  (für die – vereinfachend – Goethe steht)? Oder ist es die Unsicherheit und die Angst vor dem Neuen, Unübersichtlichen, vor dem, was uns die Mathematik, was uns mathematische Modelle zu erklären versuchen und mathematische Zukunftsmodelle voraussagen, was wir unmittelbar aber nicht selbst erleben können, kurz: vor der Komplexität der Welt und der Zukunft, zum Beispiel des Klimas. Angesichts der dramatischen Veränderungen in  unserer Welt flüchten sich offenbar viele Menschen in die Verdrängung und in die bisweilen überhebliche  Leugnung (für die – wiederum vereinfachend – Trump steht).

Mathematik hat beides, die abstrakte und die angewandte Seite. Für viele Fachleute und Interessenten ist die abstrakte Seite der Mathematik von faszinierender Schönheit. Die angewandte Seite der Mathematik erleben wir täglich in dem, was wir als naturwissenschaftliche Gesetzmäßigkeit  der Welt erfahren. Noch eindrücklicher erfahren wir die angewandte Mathematik in diesen Jahren und Jahrzehnten aber in den rasanten, sich immer weiter beschleunigenden Entwicklungen der Technik, insbesondere der Digitalisierung. Und die sich überschlagende digitale Technik wird von manchen Autoren und „Zukunftsexperten“ mit düsteren, gar endzeitlichen Dystopien <Bücher zitieren?, Beispiele?> in Verbindung gebracht, bis hin zur Übernahme der Welt durch selbstlernende Maschinen und zum Untergang der Menschheit – auch das kein Anlass, die Mathematik zu lieben.

Die Schönheit der Mathematik hat sich dagegen gerade in Deutschland einer großer Öffentlichkeit nicht vermittelt. Und das mag in der Tat damit zusammenhängen, dass man im „Land der Dichter und Denker“ Schönheit eher in der Natur, in der Kunst und in der traditionellen Kultur gesucht und gefunden hat - als in etwas scheinbar Unsinnlichem wie der Mathematik. Und da passt Goethe eben viel eher hin als Gauss und Euler, oder gar Gödel und Turing. <Hinweis auf Peter Fischer: „Die andere Bildung“>. Die Mathematik als Hochkultur? Liebe zur Mathematik – das scheint dann doch eher eine Emotion für einen kleinen Kreis von weltabgewandten Spezialisten zu sein.

Das alles erklärt die sich von Mathematik distanzierende Koketterie, das Desinteresse, die Abneigung, den Hass auf die Mathematik nicht wirklich. Ist es der (schlechte) Mathematik-Unterricht, der eine positive Beziehung zur Mathematik in so vielen Fällen so nachhaltig stört? Tatsächlich gibt viele hochkompetente und hochengagierte Mathematiklehrerinnen und –lehrer in deutschen Schulen.  Andererseits hat der Autor es  in Seminaren und bei vielen anderen Gelegenheiten leider immer wieder erleben müssen, dass die Lehrenden versucht haben, den Schülerinnen und Schülern mathematische Zusammenhänge zu „erklären“, die sie selbst nicht verstanden haben. Und das ist dann wirklich katastrophal und meist das Ende jeder mathematischen Bildungsbemühung. Solche gravierenden Fehler werden oft nur von den begabtesten, den hochbegabten Schülerinnen und Schülern durchschaut.

Auch in diesen Jahren und Tagen spielt das Thema „mathematische Bildung“ wieder eine aktuelle Rolle. Es kommt über die digitale Bildung um die Ecke. Digitale Bildung, darüber sind sich alle Akteure einig, ist eins der wichtigsten politischen Ziele überhaupt, Deutschland hat hier einen extremen Nachholbedarf. Aber sofort stellt sich die Frage: Was sind denn die Ziele  der digitalen Bildung? Wofür sollen die Milliarden €, die seit einigen Jahren den Ministerien, Schulen, Lehrerinnen und Lehrern zur Verfügung stehen, denn ausgegeben werden? Für Vernetzung, für die Ausstattung mit Hardware (für Lehrende und Lernende) – darüber wird man sich relativ schnell einig (auch wenn die Beschaffung als solche dann vielleicht <zwei?> Jahre dauert). Aber dann? Was sind dann – wenn die Ausstattung vorhanden ist  und die Arbeit anfangen kann – die Inhalte des digitalen Unterrichts? In Studien und öffentlich diskutierte Ziele sind unter anderem: Medienkompetenz ganz zentral, Programmierkenntnisse und Grundlagen der Informatik usw. Von mathematischen Inhalten ist in der öffentlichen und politischen Diskussion kaum die Rede.  Dass Algorithmen, die der Kern alles Digitalen sind, immer auch einen mathematischen Kern haben, wird so deutlich nicht gesagt. Wir schließen diesen Artikel daher mit ein paar Fragen und einer offensiven These ab.

Möchte man das positive Image, dass die Digitale Bildung noch hat, nicht mit so etwas Unbeliebtem wie der Mathematik belasten? Kann man sich ernsthaft vorstellen, dass die  Schülerinnen und Schüler die Chancen und Risiken zum Beispiel von Künstlicher Intelligenz einigermaßen realistisch einschätzen können, ohne zumindest eine Ahnung von den mathematischen Prinzipien der zugehörigen Algorithmen zu haben?

Unsere These hierzu:

Digitale Bildung und Medienkompetenz ohne Verständnis der mathematischen Prinzipien der grundlegenden Algorithmen bleiben substanzlos.


Q16 Quanten und Qubits - Was man so liest

Von Bernhard Thomas und Ulrich Trottenberg

Quanten-Computing wird in den Medien, aber auch in Vorträgen und in der Fachliteratur mit einer Reihe von Aussagen charakterisiert, die als Sprachkonstrukte ziemlich exotisch klingen - nach einer anderen Welt, in der logisch Unmögliches möglich scheint. Wir wollen uns einige dieser Sprachfiguren ansehen und überlegen, was dahinter steckt.

Unsere bisherigen Blog-Abschnitte über Qubit-Algorithmen sollten ausreichen, hier ein klares Verständnis zu schaffen. Hier die Übersicht über die Aussagen.

"Quanten können 0 und 1 gleichzeitig sein"

"Mit n Qubits kann man 2**n Zahlen gleichzeitig darstellen"

"Für N Zahlen benötigt ein Quanten-Computer nur log(N) Qubits"

"Ein Quanten-Computer kann mehrere Berechnungen gleichzeitig durchführen (Quanten-Parallelismus)"

"Was auf herkömmlichen Rechner Jahre dauert, kann ein Quanten-Rechner in Sekunden erledigen (Exponentielle Beschleunigung)"

"Quanten-Rechner werden herkömmlichen Rechnern überlegen sein (Quanten-Supremacy)"

"Jedes zusätzlich Qubit verdoppelt die Leistungsfähigkeit des Systems"

 

"Quanten können 0 und 1 gleichzeitig sein"

Dieser Satz und Abwandlungen davon ziehen sich durch die Quanten-Computing-Literatur wie ein Mantra des QC. Auch wenn er gelegentlich nur als Metapher gesehen wird, suggeriert dieser Satz in der öffentlichen Diskussion eine mystische Eigenschaft der Quanten, nicht zuletzt illustriert durch das Bild von Schrödingers Katze, die "gleichzeitig tot und lebendig" ist.

Damit werden auch die informatischen Gegenstücke der Bits, die Qubits, charakterisiert. Im Gegensatz zu Bits, die nur "0 oder 1" sein können, können Qubits "0 und 1 gleichzeitig" sein.

Wie könnten wir das feststellen? Wir wissen, dass die Messung eines Qubits entweder 0 oder 1 ergeben kann, aber nicht beides. Wenn wir mehrfach messen, bekommen wir manchmal eine 0, manchmal eine 1 als Ergebnis, aber nie "gleichzeitig". Was kann also gemeint sein - wenn es überhaupt einen Sinn ergibt.

Es gibt Varianten dieser "Gleichzeitig"-Sprachfigur, die etwas tiefergehend klingen: "Quanten können verschiedene Zustände gleichzeitig einnehmen". Wir wissen, dass man Zustände von Systemen in Form von mathematisch eindeutigen Ausdrücken beschreiben kann - so auch Qubits und Qubit-Systeme. Ausgehend von einem Anfangszustand sahen wir, wie mittels Qubit-Operationen (oder Gates) ein Qubit-Zustand in einen nächsten überführt werden kann. Zu jedem Zeitpunkt ist der Zustand des Qubits daher eindeutig festgelegt. Wenn wir nicht unsere normale zweiwertige Logik (2 Wahrheitswerte: wahr, falsch - oder 0, 1) in Frage stellen, kann ein Qubit nicht zwei verschiedene Zustände gleichzeitig haben. Eine Zahl, ein mathematischer Ausdruck, der einben Zustand beschreibt, kann nicht gleichzeitig 0 und 1 sein: z = 0 = 1?

Manchmal findet man Texte, in denen das "Gleichzeitige" durch die "Superpostion" ergänzt wird: "Quanten können in einer Superosition von 0 und 1 gleichzeitig sein". Wir wissen, was eine Superpostion ist. Z.B. ist 1/√2 (|0>+|1>), die Hadamard-Operation auf den Basiszustand |0>, eine Superpostion (oder mathematisch: Linearkombination) der Qubit-Zustände |0> und |1>. Wir haben Qubit-Zustände meist in Form von x-y-Koordinaten eines Punktes auf dem Einheitskreis beschrieben - im Beispiel also (1/√2,1/√2). Somit können wir korrekt formulieren: Ein Qubitzustand hat zwei Koordinaten. Aber was heißt dann "gleichzeitig"? Wenn jemand in Ingolstadt ist, befindet er sich z.B. auf der Strecke von München nach Nürnberg - aber ist er (möglicherweise) in München und Nürnberg "gleichzeitig"?

Wenn auch die Redewendung "... kann 0 und 1 gleichzeitig sein" etwas Unsinniges suggeriert, können wir sie als solche akzeptieren, wenn man sie auf die Möglichkeit einer Superposition von zwei (Basis-)Zuständen eines Qubits zurückführt. Darin unterscheiden sich Qubits und Bits tatsächlich.

Und während ein Bit nur einen der beiden Zustände 0 oder 1 repräsentieren kann (siehe BIT-Box in Q3), kann ein Qubit einen Zustand aus einer unendlichen Menge von Superpositionszuständen annehmen. Wobei wir das "unendlich" im Sinne aller Punkte auf dem Einheitskreis verstehen, ohne zu fragen, ob wirklich unendlich viele Superpositionen realisierbar sind (technisch und quantenmechanisch).

Eine elegante und gleichzeitig korrekte, einfache Erklärung finden wir im Glossar der IBM (Übersetzung DeepL):

Ein Qubit (ausgesprochen "kju-bit" und kurz für Quantenbit) ist der physikalische Träger der Quanteninformation. Es ist die Quantenversion eines Bits, und sein Quantenzustand kann Werte von |0> , |1> oder die Linearkombination von beiden annehmen, was ein Phänomen ist, das als Superposition bekannt ist.

Mehr ist eigentlich nicht zu sagen.

"Mit n Qubits kann man 2**n Zahlen gleichzeitig darstellen"

Mit n Bits kann man zwar auch 2**n verschiedene Zahlen darstellen - gemeint sind Binärzahlen in Form von Bitketten - aber immer nur eine zu einem Zeitpunkt, z.B. im Speicher eines klassischen Computers.

Diese Aussage zusammen mit dem "Quantenparallelismus" (s.u.) soll die überragende Leistungsfähigkeit von Quanten-Computern deutlich machen. Man liest auch: "Mit jedem weiteren Qubit verdoppelt sich die Kapazität" und "Schon 300 Qubits können mehr Werte speichern, als das bekannte Universum Teilchen enthält".

Nun ja, wie soll man das verstehen? Zunächst zu den beiden letzten Versionen des "Kapazitätssatzes": Auch mit jedem weiteren Bit verdoppeln sich die möglichen Werte, die man speichern - und wieder lesen - kann. Immer einer zu einer Zeit (Schreib-Lese-Zyklus). Und mit 300 Bits kann man mehr als alle Teilchen des bekannten Universums abzählen, oder je eine Zahl zu einem Zeitpunkt im Bereich 0 bis 2**300-1 speichern. Bei Qubits liegt das Geheimnis offenbar wieder im "gleichzeitig". Wieder nur eine Metapher?

Ein System von n Qubits, z.B. n=3, befindet sich zu einem Zeitpunkt in einem Zustand (von prinzipiell unendlich vielen), der eine Linearkombination (Superposition) von nunmehr 2**n Basiszuständen ist, also 8 bei n=3. In der ket-Schreibweise tritt jede n-lange Bitkette als ein Basiszustand auf, bei n=3 also |000>, |001>, |010>, |011>, |100>, |101>, |110>, |111>. Bei n = 300 sind es halt ......

Denken wir an Koordinatensysteme, wie z.B. in Q11, dann haben wir ein 8-dimensionales Koordinatensystem und jeder 3-Qubit-Zustand  wird durch 8 Koordinaten beschrieben. "Gleichzeitig" - für einen Punkt braucht man 8 Koordinaten "gleichzeitig".

Kann man in einer Superposition von 2**n Basiszuständen das gleichzeitige Speichern von 2**n Zahlen sehen? Nehmen wir eine gleichmäßige (uniforme) Superposition, d.h. alle Basiszustände kommen mit dem gleichen Koeffizienten vor. Bei n=3 also mit 1/√8.

Speichern nützt nur dann etwas, wenn man  mit dem Gespeicherten etwas anfangen kann, z.B. weiter verarbeiten mittels Qubit-Operationen oder Lesen, d.h. Messen. Beim Weiterverabeiten zu einem neuen Zustand können tatsächlich alle Komponenten der Linearkombination in einer Operation berücksichtigt werden (Quantenparallelismus, s.u.). Beim Messen (gegen die Basiszustände) erhält man eine Häufigkeitsverteilung über alle Bitketten, die als Basiszustände in der aktuellen Superposition vertreten sind. Sind einige nicht vertreten, tauschen sie, bis auf Quantenfehler, auch nicht im Messergebnis auf.

Aber was machen wir damit? Welche Information ziehen wir daraus? Dass 2**n Bitketten beim Messen auftreten können, wussten wir schon vorher. Wir "lesen" also nichts Neues. Wenn wir 2**300 Teilchen mit unterschiedlichen Bitketten versehen wollten, konnten wir das auch schon ohne Quanten-Computer (QC).

Wo liegt also die Information, die wir durch die Quanten-Berechnung gewonnen haben? Wohl in der gemessenen Häufigkeitsverteilung:

  1. Wir schauen nur auf "vorhanden" und "nicht vorhanden" von gemessenen Bitketten. Eine häufige Form der Interpretation von QC-Ergebnissen, z.B. beim Herausfinden eines Orakels, wie im Bernstein-Vazirani Problem oder dem von Deutsch-Josza. Man kann sich das so vorstellen: Der Qubit-Algorithmus "rechnet" mit den 2**n Basiszuständen des n-Qubit Systems, der Ergebnis-Zustand enthält aber in nur einen Basiszustand, der dann bei der Messung eine ziemlich eindeutige Bitkette liefert. Eine solche Methode ist auch die sogenannte Amplituden-Verstärkung (amplitude amplification). Zum Auffinden einer bestimmten Bitkette beginnt man mit einer uniformen Superposition und verändert diesen Zustand Schritt für Schritt so, dass die Amplitude des Basiszustands mit der gesuchten Bitkette zunehmend "größer" wird. Die Iteration wird beendet, wenn man nahe genug an der gesuchten Bitkette ist, d.h. wenn beim Messen diese Bitkette eine überragende Wahrscheinlichkeit erreicht. Das Verfahren wird auch Grover-Iteration genannt.
  2.  Uns interessiert ein "numerisches" Ergebnis, z.B. eine Zahl oder eine Reihe von Zahlen (Vektor), die sich bei der Messung am Ende der Rechnung als Häufigkeiten bestimmter Bitketten ergeben. Als "numerisches" Ergebnis nimmt man dann die Liste dieser Häufigkeiten. Hier stoßen wir aber auf verschiedene Probleme. Eines davon ist, dass ein echter QC die Häufigkeiten nicht exakt misst. Um halbwegs brauchbare Werte abzuleiten, müssen wir das QC Programm wiederholt durchlaufen lassen. Wie oft? Für n=3 kann man das ja einmal ausprobieren mit dem IBM QC. Wie oft bei n=50 oder n=300?

"Für N Zahlen benötigt ein Quanten-Computer nur log(N) Qubits"

Dies ist eine Variante der vorigen Aussage und besagt: "Während man auf herkömmlichen Computern für N Zahlen auch N Speicherplätze benötigt, braucht ein Quanten-Computer nur log(N) Qubits". Man hat also, umgekehrt gesehen, einen exponentiellen Effekt. Und damit ist ein Quanten-Computer exponentiell leistungsfähiger als ein herkömmlicher. Wie auch immer das gemeint ist, es läuft darauf hinaus, dass man eine Überlagerung der N Basiszustände eines "log(N) großen"  Qubit-Systems herstellt, bei der die Koeffizienten (auch Amplituden genannt) gerade die gewünschten N Zahlen sind. Wenn man also weiß, wie, kann man einen solchen Superpositionszustand als "Input" herstellen, und einen Qubit-Algorithmus damit weiterrechnen lassen. Das ist das sog. Amplituden-Verfahren oder auch Amplituden Encoding.

Aber halt! Die N Amplituden müssen ja in der Summe der Quadrate 1 ergeben. Schränkt das nicht die freie Wählbarkeit der N Zahlen ein? Nicht wirklich - man muss nur vorher jede Zahl durch die Summe aller Quadrate teilen, genauer, durch die Quadratwurzel dieser Summe. Damit kann man dann "Quanten-Rechnen". Allerdings tritt bei der Ergebnis-Festellung wieder das Problem aus 2. auf.

Um die N Zahlen als Input verwenden zu können, muss man zu Beginn des Qubit-Algorithmus geeignete Qubit-Operationen (Gates) ausführen, so dass sie in einer Superposition zu Koeffizienten von Basiszuständen werden. Das kann trotz "Quantenparallelität" aufwendig sein. Hier ein Beispiel:

Angenommen, wir wollen die 4 Zahlen 1.0, 1.0, √2 = 1.414, 2.0 als Input in Form von Amplituden für ein 2-Qubit-System bereitstellen (N=4, n=2). Die Summe der Quandrate ist 1.0+1.0+2.0+4.0 = 8.0.  Die Wurzel daraus ist √8. Dadurch müssen wir die 4 Zahlen teilen, damit diese eine gültige 2-Qubit Superposition ermöglichen: 1/√8, 1/√8, 1/√4, 1/√2. Es ist damit z.B. der Zustand 1/√8 |00> + 1/√8 |01> + 1/√4 |10> + 1/√2 |11> durch einen Qubit-Circuit herstellbar. Wie geht das? Hier ist eine Lösung:

Codieren der 4 Zahlen mittels 2 Qubits
Amplituden der Superposition: 0.354, 0.354, 0.5, 0.707
Messergebnisse: Häufigkeiten1/8, 1/8, 1/4, 1/2 (idealisiert)

Das "Fine-Tuning" der Amplituden erfolgt hier mittels Drehungen (Ry). Der resultierende Zustand ist verschränkt, d.h. er kann nicht als Kombination der einzelnen Qubits hergestellt werden. Das kann man nach der Methode in Q9 nachprüfen. (Ergebnis eines Simulatorlaufs mit 1024 shots.)

"Ein Quanten-Computer kann mehrere Berechnungen gleichzeitig durchführen"

Diese Aussage wird häufig als Verdeutlichung des sog. Quanten-Parallelismus verwendet. Auch hier wird wieder das Mantra-Wort "gleichzeitig" verwendet, dieses Mal aber in einer sinnvollen Bedeutung, nämlich im Gegensatz zu "nacheinander" (sequentiell). Natürlich können auch herkömmliche Computer heutzutage mehrere Berechnungen zeitlich parallel ausführen. Der Unterschied ist aber technisch fundamental: Herkömmliche Parallelrechner (z.B. MIMD-Architekturen) führen mehrere, durchaus auch verschiedene, Computerbefehle (Instructions) zur gleichen Zeit aus und verwenden dabei u.U. unterschiedliche Daten als Input.

Quanten-Computer führen zu einem Zeitpunkt einen Befehl (in Form von Gates) auf einer Datenstruktur aus. Die Datenstruktur ist der aktuelle Zustand eines n-Qubit-Systems, also meist eine Superposition oder gar eine Verschränkung. Der Zustand eines n-Qubit-Systems kann aber, wie wir zuvor gesehen haben, bis zu N=2**n Zahlen (in Form von Amplituden) repräsentieren. Indem der Qubit-Befehl auf den Zustand wirkt, wirkt er simultan auf alle Basiszustände, die in der Superposition vorkommen. Als Ergebnis können sich damit simultan alle Amplituden der Basiszustände verändern. Bingo!

Mathematisch gesehen ist das überhaupt nichts Ungewöhnliches. Eine Matrix A "wirkt" bei Multiplikation mit einem Vektor x auf alle seine Komponenten "gleichzeitig": y= Ax (Lineare Algebra). Wird ein Punkt (x,y) mittels einer Funktion F verschoben, dann werden alle Koordinaten "gleichzeitig" verschoben: (u,v) = F(x.y). Und auch die Qubit-Operatoren (Gates) können mathematisch als Matrizen dargestellt und verwendet werden. Wenn es allerdings ans praktische Rechnen geht, etwa mit einem Algorithmus, der die Matrixmultiplikation explizit durchführt, dann geht es klassisch (auf einem herkömmlichen Rechner) wieder nur Schritt für Schritt: die Operation wird in viele Einzelschritte zerlegt, die nacheinander ausgeführt werden. Hier unterscheiden sich klassische und Quanten-Computer tatsächlich fundamental. Quanten-Computer, wie die von IBM, sind technisch so aufgebaut, dass sie eine komplette Superposition in einem, statt in vielen Schritten verarbeiten können.

Wie man sich das vorstellen kann, zeigen wir an einem einfachen Beispiel: Das exklusive Oder (XOR) von zwei Bits entspricht der einfachen Bit-Addition bis auf die Operation "1+1", die 0 ergibt  statt 2. (Dafür verwendet man auch das Symbol ⊕ statt +). Wir können die Bit-weise XOR-Berechnung auch als Qubit-Circuit durchführen. Das ergibt die 4 Auswertungen in der Abbildung, wobei jeweils q0 und q1 auf Zustand 0 bzw. 1 gesetzt werden und das Ergebnis den neuen Zustand von q1 ergibt.

Abb.: Vier Berechnungen von XOR als Qubit-Algorithmus

Quanten-Parallelismus ermöglicht aber Superpositionen statt einzelner Basiszustände als Input zu präparieren, typischerweise mit dem H-Gate (Hadamard-Gate). Damit muss die Berechnung nur einmal ausgeführt werden und wir erhalten alle 4 Ergebnisse auf einmal.

 

Abb.: XOR Berechnungen mit Quanten-Parallelismus

Um die Ergebnisse einfacher "lesen" zu können, haben wir hier das XOR Ergebnis  auf ein drittes Qubit q2 übertragen. So erhalten wir als Messergebnis genau die obige XOR Tabelle mit XOR -> q2 : 000, 101, 110, 011 (q2 steht hier wieder jeweils ganz links in der Bitkette).

 

"Was auf herkömmlichen Rechnern Jahre dauert, kann ein Quanten-Rechner in Sekunden erledigen"

Als Begründung liest man dabei oft, dass Quantenrechner "exponentiell schneller" rechnen können als herkommliche. Was bedeutet das?

Das heißt zum Beispiel folgendes: Wenn wenn wir zwei Methoden haben, die eine Aufgabe lösen, etwa eine Berechnung durchführen oder ein "Geheimnis" (Q15) zu finden, und die eine Methode benötigt N Zeiteinheiten oder Rechenschritte, die andere aber nur log(N) viele, dann stellt die zweite Methode eine exponentielle Verbesserung - oder Beschleunigung - gegenüber der ersten dar. (Denn, für k=log(N) ist  N=exp(k).)

Es gibt eine ganze Reihe von solchen "Beschleunigungsbeziehungen" zwischen Methoden zur Lösung gleicher Aufgaben. Der Grover Qubit-Algorithmus benötigt nur etwa √N Schritte gegenüber N Schritten bei der klassischen Methode. Hier haben wir also eine quadratische Beschleunigung. In Q15 hatten wir das am Beispiel des Bernstein-Vazirani-Algorithmus diskutiert.

Solche Beschleunigungen gibt es von je her auch im klassischen Computing als Effekt einer algorithmischen Verbesserung. So gibt es z.B. unterschiedliche Sortier-Algorithmen, die sich bezüglich ihres Rechenaufwands erheblich unterscheiden, oder auch Verfahren zur numerischen Simulation, bei denen sogenannte Mehrgitterverfahren große Beschleunigungsraten bringen.

Der tatsächliche Beschleunigungseffekt des Quanten-Computing gegenüber herkömmlichen Bit-Computing beruht auf einer Kombination von zwei Dingen: dem Quanten-Parallelismus der Hardware (s. voriger Abschnitt) und dem Algorithmus, der für Qubits konstruiert werden kann.

Ein Rechenbeispiel: Hätte man eine (hypothetische) Aufgabe, die auf einem gewöhnlichen Rechner mit dem schnellsten Algorithmus 10 Jahre dauern würde, dann würde eine exponentielle Beschleunigung auf einen Zeitaufwand von rund 20 Sekunden führen: log(10*360*24*60*60) = log(311040000) = 19,56. Diese Zahlen sind allerdings eher fiktiv, da wie keine konkrete Aufgabe vor Augen haben und Wiederholungen und anderen "Overhead" nicht berücksichtigen. Aber es zeigt, wie sich die Größenordnung ändern.

Hätten wir also eine Aufgabe, die herkömmlich Jahre dauern würde, und hätten wir dazu ein Quanten-Computer, der sie alternativ mit exponentieller Beschleunigung löst, könnten wir die Aussage so akzeptieren. Allerdings gibt es noch nicht viele Algorithmen für Quanten-Computer, die in dieser Form praktische verwendbar sind. Was nicht zuletzt auch an der Größe und "Sensibilität" heutiger QC liegt.

Ein relevantes Beispiel, das immer wieder als "Gefahr durch Quanten-Computer" zitiert wird, ist das Verfahren von Shor, mit dem man einen wichtigen Schritt beim "Knacken" von besten heutigen Verschlüsselungsverfahren in akzeptabler Zeit durchführen kann. Um das zu verstehen, braucht es aber schon mehr Einsicht in die zugrunde liegende Mathematik. Daher wird hier meist nur der (befürchtete) Effekt zitiert und auf Verständnis verzichtet.

"Quanten-Rechner werden herkömmlichen Rechnern überlegen sein"

Man spricht auch generell von Quanten-Überlegenheit (Quantum Supremacy). Trotz der beängstigent klingenden Bezeichnung handelt es sich hier um eine unspektakuläre Sache. Es bedeutet lediglich das Ereignis, dass es eine Berechnung gibt, die ein Quanten-Computer schneller als jeder herkömmliche Supercomputer durchführen kann. Dabei ist es erst einmal egal, ob diese Berechnung einen Sinn macht oder praktische Bedeutung hat. Wie man kürzlich lesen konnte, hat man (mit einem QC von Google) bereits eine solche Berechnung durchführen können, d.h. der Meilenstein Quantum Supremacy ist schon erreicht.

"Jedes zusätzlich Qubit verdoppelt die Leistungsfähigkeit des Systems"

Hier bleibt einerseits unklar, was mit Leistungsfähigkeit gemeint ist - Rechenleistung, Speicherleistung, Leistung eines Algorithmus, der ein Qubit mehr zur Verfügung hat? Auch wenn wir einen Bit-Speicher (Register) um ein Bit erweitern, also von n auf n+1 Bits, können wir damit 2**(n+1) = 2*2**n Werte speichern bzw. mehr oder längere Befehle ausführen. So hatte sich auch die Prozessorarchitektur von früheren 32 Bit auf 64 Bit bei herkömmlichen Computern verändert und dabei prinzipiell eine 32-fache Verdoppelung der Leistung ermöglicht.

Was macht nun ein Qubit mehr aus bei einem Quanten-Computer? Zum einen gibt es dann doppelt so viele Basiszustände. Z.B. von 8 bei einem 3-Qubit System auf 16 bei 4 Qubits. In Superposition können damit 16 statt nur 8 Koeffizienten (Amplituden) einen Zustand bestimmen. Diese Verdoppelung ist analog der Situation bei Bits und wir hatten das schon oben bei N vs log(N) erklärt.

Zum anderen wissen wir, dass - ganz ander als beim Bit-Computing - verschränkte Zustände eine wichtige Rolle im Qubit-Computing spielen. Man kann sich also fragen, was bringt ein zusätzliches Qubit für die möglichen Verschränkungen, oder allgemein für die möglichen "Konfigurationen" von Superpositionen. Anders ausgedrückt: wieviel mehr Möglichkeiten gibt es für Zustände, in denen nur ein Basiszustand vertreten ist, oder zwei, oder drei usw. - unabhängig von den Werten der Amplituden. Diese Zahl wächst offenbar kombinatorisch. Für n=2 sind die "Muster" noch überschaubar: 4 mal |x>, 6 mal |x>+|y>, 3 mal |x>+|y>+|z> und 1 mal |x>+|y>+|z>+|v>, wenn |x>,|y>,|z>,|v> die Basiszustände |00>, |01>,|10>,|11> durchlaufen.

In Q13 (Superdichte Codierung) haben wir einen anderen Verdopplungseffekt gesehen: die Kapazität, Bitketten in GHZ-verschränkten Qubits zu "speichern" bzw. zu übertragen. Hier brachte jedes weitere Qubit in einer solchen Verschränkung eine Verdoppelung der Anzahl übertragbarer Bitketten.

 

Zuletzt eine Anmerkung: Bei "Was man so liest" fragt man sich leicht, wo man das gelesen hat. Die konkreten Aussagen in den Überschriften sind keine echten Zitate, obwohl sie so oder in Variationen der Wortwahl tatsächlich vorkommen. Wir wollen hier aber kein "Bashing" anzetteln, sondern nur kostruktiv klären, was dahinter steckt oder wo man leicht fehlgeleitet wird. Daher verzichten wir auf Quellenangaben.

 


Quantencomputing ohne Quantenmechanik?

Von Ulrich Trottenberg und Bernhard Thomas

Bild: interactive.quantumnano.at

Quantencomputing ist ein heißes Thema - in Universitäten,  Forschungszentren,  in den großen IT-Firmen, in der internationalen und nationalen Forschungsförderung - und mittlerweile auch in der Politik. Das geht so weit, dass uns führende Personen der Öffentlichkeit, die sonst mit ihren schwachen mathematischen Leistungen und ihrem mathematischen Desinteresse kokettieren, uns das Quantencomputing mit seinen großartigen, revolutionären Möglichkeiten „erklären“.

Auf der anderen Seite haben uns die bedeutendsten Physiker des letzten Jahrhunderts erklärt, dass man die Quantenmechanik - also die physikalische Basis des Quantencomputing – wenn überhaupt,  nur mathematisch verstehen kann: Zentrale Phänomene der Quantenmechanik, insbesondere die Superposition und die Verschränkung,  entziehen sich der Anschauung und stehen in (scheinbarem) Widerspruch zur physikalischen Alltagserfahrung.  Selbst Albert Einstein bezeichnete das Phänomen der Quanten-Verschränkung  als spukhafte Fernwirkung, der ebenfalls geniale Physiker Richard Feynman formulierte pointiert: „Man kann sicher sagen, niemand versteht die Quantenmechanik.“  Und Erwin Schrödinger,  einer der Begründer der Quantenmechanik, versuchte mit seinem berühmten Katzen-Paradox in einem oft missverstandenen Gedankenexperiment die Übertragung quantenmechanischer Phänomene auf die Alltagswelt ad absurdum zu führen (Siehe "Schrödingers Katze" bei Wikipedia).

Bild: scratchpost.dreamhosters.com

 

Und die echten Experten des Quantencomputing? Was sagen die? Da überwiegen in der Tat die optimistischen Einschätzungen (nicht nur bei denen, die von den Forschungsmilliarden gefördert werden). Sie gehen z. B. davon aus, dass man mit Quantencomputern - bei einer Reihe wichtiger Anwendungen - viel, viel schneller, „exponentiell“ schneller rechnen kann als mit herkömmlichen Computern, dass man mit Quantencomputern Probleme lösen kann, die als praktisch unlösbar gelten, fast jeden Verschlüsselungscode knacken kann usw. .

Aber es gibt auch die Skeptiker, die noch einen weiten Weg vor sich sehen bis zu einer praktischen Realisierung großer, leistungsfähiger Quantencomputer. Ein Argument der Skeptiker ist auch, dass mit Quantencomputern erzielte Ergebnisse in aller Regel nur mit einer gewissen Wahrscheinlichkeit „richtig“ sind und dass man möglicherweise die Rechnungen sehr häufig  wiederholen muss, um die Ergebnisse abzusichern.

Schließlich die Algorithmen, die Software? Gibt es die denn schon? Kann man die entsprechenden Algorithmen verstehen? Die Interscience Akademie für Algorithmik hat den Versuch gemacht, Quanten-Algorithmen verständlich zu machen mit nicht mehr als Schulmathematik (Unterstufe / Mittelstufe). Daraus ist eine Serie von 16 Blogs entstanden, eingeleitet durch den Artikel "Quanten-Computing für die Schule - Echt jetzt?". Das geht ohne die Quantenmechanik zu bemühen – und auch ohne die quantenmechanische Mathematik (wie Hilberträume, partielle Differentialgleichungen, Tensoren, Matrizen und Vektoren usw.) zu verwenden. Was vorausgesetzt wird, ist ein bisschen Schulmathematik, einfaches Grundverständnis für klassische Computer; nützlich beim Ausprobieren, aber nicht notwendig, sind elementare Programmierkenntnisse.

Viel Spaß beim Quantencomputing!

Bild: www1.wdr.com

 


Quanten-Computing für die Schule - Echt jetzt?

Von Bernhard Thomas und Ulrich Trottenberg

 

Kann man Quanten-Computing als Thema im Schulunterricht behandeln? Die erste schnelle Antwort wird sein: sicher nicht! Die physikalischen Grundlagen, die Mathematik dazu übersteigt unsere Vorstellungskraft und jegliches Wissen, dass man im Rahmen von Schule vermitteln bzw. erwerben kann, sei es im Physikunterricht, in Mathematik oder im Informatikunterricht. Andererseits hört und liest man seit einiger Zeit viel über das Potenzial zukünftiger Quantencomputer - übertroffen nur noch von der Diskussion über Künstliche Intelligenz.

Dem Quanten-Computing, genauso wie dem "klassischen" Computing, liegen Algorithmen zugrunde. Wenn wir uns auf das Algorithmische des Quanten-Computing beschränken, kann es uns dennoch gelingen - etwa im Rahmen des Informatikunterrichts - auch Algorithmen aus der "Quanten-Welt" (Qubit-Algorithmen) kennen zu lernen, zu verstehen und sogar zu konstruieren. Und, was das Ganze besonders spannend macht, auch auf den ersten echten Quantencomputern laufen zu lassen! Auch bei herkömmlichen Computern verstehen wir ja die Physik nicht wirklich, können aber dennoch schon Grundschülerinnen und Grundschülern erklären, wie man grafische Programme erstellt, die dann auf Computern oder kleinen Robots laufen. (Siehe Open Roberta, Calliope, Scratch usw.)

Die Q Blog-Serie der Interscience Akademie für Algorithmik

Unsere Q Blog-Serie ist primär gedacht als Information, Material und Anregung für Lehrpersonen oder interessierte Schülerinnen und Schüler. Es gibt aber auch einiges für jeden zu entdecken, der immer schon einmal wissen wollte, was das Besondere an den geheimnisvollen Qubit-Algorithmen und ihren viel gerühmten Eigenschaften ist. Denn tatsächlich - einiges ist anders als man es von herkömmlichen Algorithmen gewohnt ist.

Schulwissen

Wir werden sehen, dass wir uns in dieser Serie auf allgemeines Schulwissen beschränken können. D.h. wir kommen zum Einen ohne Kenntnisse  der Quantenphysik aus, wenngleich die meisten Ideen und Konzepte der  Quanten-Informatik und der Qubit-Algorithmen aus der Quantenphysik abgeleitet sind, und zwar insbesondere aus der Mathematik der Quantenphysik. Dort haben sie auch ihre Entsprechung, sogar ihre Umsetzung, in Form von Quanten-Computern, haben. Der Respekt vor diesem immensen mathematisch-naturwissenschaftlichen Wissen seit den Anfängen des letzten Jahrhunderts kann nicht groß genug sein, Respekt gebührt vor allem denen, die sich seit etwa den 1980er Jahren mit der informatischen Bedeutung der Quantenphysik befasst haben und befassen. Auch hier ist der Schatz an dokumentiertem Wissen heute unüberschaubar. Was aber nicht bedeutet, dass man aus Ehr-Furcht davor keinen Zugang zu diesen Dingen finden kann.

Zum anderen wollen wir ohne die "höhere Mathematik" auskommen. Wir verzichten auf Hilbert-Räume, Vektoren und Matrizen, Tensor-Rechnung, komplexe Zahlen, partielle Differentialgleichungen - das übliche Handwerkszeug professioneller Quanten-Mathematiker und-Informatiker. Was wir verwenden, ist bewusst eher mittleres Schul-Niveau: die Darstellung von Punkten im Koordinatensystem, den Einheitskreis im Koordinatensystem, ab und an den "Pythagoras", Prozentrechnung und relative Häufigkeiten, auch mal den Sinus oder Cosinus, wenn's hoch kommt -  und was wir brauchen, ist Offenheit für neue Entdeckungen.

Zugegeben, wir werden damit nicht die gesamte Quanten-Informatik und ihr algorithmisches Instrumentarium darstellen können. Aber wir werden mit unseren Mitteln die Grundprinzipien von Qubits und Qubit-Algorithmen verstehen, einfache bis namhafte komplexere Algorithmen kennenlernen und dabei viele der mit Qubits verbundenen Begriffe und Eigenschaften entmystifizieren. Und auch der korrekte, sinnvolle Sprachgebrauch der Qubit-Welt will eingeübt werden.

Entdecken statt Auswendiglernen

Auch in der Darstellung des Themas Qubit-Algorithmen gehen wir einen etwas anderen Weg. Statt mit den üblichen Definitionen loszulegen, gehen wir hier auf Entdeckungstour. Unter anderem die grundlegenden Modelle – vom Bit bis zum Qubit – entwickeln wir anhand von “virtuellen Experimenten”. Die allerdings nichts mit Quantenphysik zu tun haben. Natürlich "lernt" man dabei auch Neues, das man sich merken sollte - aber dafür gibt es Beispiele "zum Anfassen", damit das leichter fällt.

Qubits oder Quanten?

Warum sprechen wir von Qubit-Algorithmen und nicht von Quanten-Algorithmen? Qubits sind die "Objekte" der Quanten-Informatik und der Algorithmen, die wir hier besprechen. Man kann sie erst einmal als Entsprechung zu klassischen Bits verstehen. Sie sind im Prinzip völlig unabhängig von dem, was "Quanten" bedeutet - bis auf die Tatsache, dass man sie am besten auf sogenannten Quanten-Computern  implementiert, die Qubits und die Qubit-Algorithmen. Solange man sich also mit den Objekten nur algorithmisch beschäftigt, spielen Quanten im physikalischen Sinne keine Rolle. So auch in unserer Blog-Serie. Zugegeben, die Bezeichnung Qubit ist natürlich eine Zusammenfügung aus Quantum und Bit.

Quanten dagegen sind ein physikalisches Konzept. Wen das nicht interessiert, kann diesen Absatz ab hier überspringen. Man kann auch ohne dieses Wissen alles Weitere verstehen, da sind wir sicher.

Ein Quant bezeichnet ursprünglich die kleinste Einheit einer physikalischen Wirkung (Wikipedia: Plancksches Wirkungsquant). Max Planck erkannte, dass in der physikalischen Welt alle Veränderungen in "Sprüngen" von mindestens Quantengröße vor sich gehen - wenn man genau genug hinschaut. (Der viel zitierte "Quantensprung" ist also eigentlich die kleinste Veränderung, die man erwirken kann.)

Im atomaren und sub-atomaren Bereich der Physik gibt es vielfältige Abläufe, die in diesem Sinne "gequantelt" vonstatten gehen. Wenn zum Beispiel ein Elektron auf ein niedrigeres Energieniveau zurück fällt, gibt es Energie von der Größe eines Vielfachen des Planckschen Quants ab und das in Form eines Lichtteilchens (Photon). Üblicherweise werden daher auch diese "Energiepakete" als (Licht-)Quanten bezeichnet. Typisch für ein Photon ist, dass es je nach experimenteller Bedingung ein - im Sinne makroskopischer Phänomene - teilchenartiges oder ein wellenartiges Verhalten zeigt. Auch andere physikalische Objekte, wie z.B. ein Elektron, kann dieses Verhalten zeigen, weshalb man sie ebenfalls als physikalische Quantenobjekte oder -systeme auffasst bzw. verwendet.

Das Verhalten von Quantenobjekten lässt sich durch eine (mathematische) Zustandsbeschreibung charakterisieren (Quantenzustand), etwa durch mathematisch anspruchsvolle partielle Differentialgleichungen (z.B. die Schrödinger-Gleichung). Damit lassen sich bestimmte Quanteneigenschaften erklären und durch einen Mess-Prozess bestimmen.

Grundlage für allgemeine Quanten-Computer, auf denen wir Qubit-Algorithmen ablaufen lassen können, sind Quantensysteme, also physikalische Systeme, bei denen sich Zustandsänderungen mittels Quanten vollziehen. Für die Realisierung von Qubits verwendet man Systeme mit Quanteneigenschaften, die grundsätzlich zwei gegensätzliche Ausprägungen haben, und deren allgemeiner Zustand als Überlagerung dieser beiden Ausprägungen dargestellt werden kann (Superposition genannt).

Eine weitere Besonderheit, die wir auch bei den Qubit-Algorithmen verwenden, ist, dass man den Quantenzustand eines Systems nicht wissen kann - prinzipiell nicht! Was man tun kann, ist, ein Quantensystem messen und aus den Messergebnissen gewisse Rückschlüsse auf den Zustand ziehen. Quantenphysiker können aber durchaus Quantenzustände "herstellen", durch physikalische Operationen und durch Überprüfung mit Messungen. Allerdings kann man ein Quantensystem nicht zweimal messen; nach dem ersten Messen ist es nicht mehr in dem Zustand, in dem es bei der Messung war. Schlimmer noch, bei den meisten Messungen am irgendwie "gleich hergestellen" Quantenzustand bekommt man unterschiedliche Ergebnisse! Wenn die Messung aber vielfach wiederholt wird, kann man allerdings eine Häufigkeitsverteilung der Ergebnisse erstellen und daraus so etwas wie die Wahrscheinlichkeit für die einzelnen Ergebnisse ableiten. Der Quantenzustand "äußert" sich dann per Messungen in Form einer Wahrscheinlichkeitsverteilung für die möglichen Ergebnisse. Höchst eigenartig - aber darauf basiert letztlich das Besondere an Qubits und Qubit-Algorithmen - sie sind eine Abstraktion des Geschehens bei bestimmten physikalischen Quantensystemen. Und darauf wollen wir uns hier beschränken.

Ein faszinierendes und auch für den Physik-Laien gut verständliches Video findet man hier. Es demonstriert physikalisch die auch in der Qubit-Algorithmik wichtigen Begriffe Superposition und Verschränkung sehr anschaulich anhand von Photonen-Experimenten.

Hier endet der "Quanten-Absatz".

Qubit Prinzipien

Das Ungewöhnliche an Qubits lässt sich durch zwei, drei Grundprinzipien beschreiben:

Erstens, ein Qubit, oder auch ein Qubit-System, hat Zustände, die sich nicht direkt zeigen, sondern nur indirekt, wenn man sie misst. Dabei kann es durchaus sein, dass verschiedene Zustände gleiche Messergebnisse liefern.

Zweitens, es gibt Zustände, deren Messung nicht ein eindeutiges Ergebnis liefern - wie 0 oder 1 beim "Messen" normaler Bits (z.B. Lesen, Ausdrucken, Verrechnen). Ihr Messergebnis kann nur durch feste Wahrscheinlichkeiten für verschiedene mögliche Ereignisse (z.B. 0 oder 1) charakterisiert werden. Das ist eine Besonderheit, die wir am besten durch eine einfache Analogie verdeutlichen.

Man stelle sich vor: In einem Pausenraum stehen zwei Getränkeautomaten. Der eine Automat ist ein Becher-Automat. D.h. wenn man C oder L drückt und Geld einwirft, fällt ein Becher und wird mit Cola, bzw. Limo gefüllt. Außerdem gibt es die Taste H (für Halbe-Halbe), damit bekommt man eine Mischung halb Cola, halb Limo, also so etwas wie Mezzomix. Insgesamt also: drei Tasten, drei Getränke. Der andere Automat gibt nur Getränke in Flaschen aus. C und Geldeinwurf: eine Flasche Cola, bei L eine Flasche Limo. Und jetzt kommt's: Was, wenn man H wählt? Nicht etwa eine Flasche Mezzomix, sondern Cola! Beim nächsten Mal: wieder Cola. Also sind C und H einfach zwei Tasten für Cola? Beim nächsten Mal H gibt es eine Limo. Der nächste bekommt wieder eine Cola, die nächsten Schüler Limo, Limo, Cola usw. jeweils ein Flasche. Also drei Tasten, zwei "Outputs"? Die Schüler finden das krass und kaufen nur noch H - wegen des Überraschungseffekts. Ein Schüler kommt auf die Idee zu zählen. Über die ganze Pause hinweg zählt er 14 mal Cola und 16 mal Limo. Aha, das ist es also, was H bedeutet: Cola und Limo-Flaschen werden (zufällig) in etwa der Hälfte aller Käufe ausgegeben.

Der zweite Automat ist ein "Qubit-Cola-Limo-Automat": Mit Taste C gibt's Cola, mit L gibt's Limo und mit H gibt's ... wir haben's gesehen.

Drittens, und dann reicht es erst einmal, man kann alle diese Zustände "herstellen". D.h. es gibt Qubit-Operationen (ähnlich wie Bit-Operationen), die einen Zustand in einen nächsten überführen. Und mit solchen kann man alle Qubit-Zustände erreichen, sogar determiniert.

Aus Qubits und solchen Operationen werden Qubit-Algorithmen aufgebaut - die Messungen nicht zu vergessen.

Spannend! Mit Qubit-Algorithmen auf echten Quantenrechnern experimentieren

Seit etwa 2017 gibt es von IBM die in der Cloud verfügbare Umgebung IBM Q Experience. Sie umfasst den Zugang zu realen Quanten-Computern, QC-Simulatoren und Programmierumgebungen. Besonders motivierend ist die Möglichkeit, kleine Qubit Algorithmen grafisch zu erstellen (mit dem Circuit Composer). Für fortgschrittene Qubit-Algorithmen bietet sich ein mit Python verwendbares Paket für Qubit-Programmierung an (das Qiskit). In dieser Blog-Serie beschränken wir uns auf den IBM Q Composer zur Illustration und beim Experimentieren mit Qubit-Algorithmen. Programmieren ist keine Voraussetzung für diese Q-Serie. Wer aber Spaß daran hat, kann viele interessante Dinge mit dem Composer oder in der Kombination von Python und Qiskit ausprobieren - ebenfalls direkt in der IBM Q Experience Cloud (via Browser). *)

Auch Google hat eine sehr leistungsfähige QC-Umgebung in der Cloud verfügbar gemacht (Google Cirq). Sie bietet ähnliche Möglichkeiten zur Qubit-Programmierung wie die IBM Umgebung und kann hier als Alternative zur IBM Q Experience durchaus in Betracht gezogen werden. Microsoft bietet mit Azure Quantum eine Entwicklungsplattform mit der Programmierumgebung QDK (Quantum Developer Kit) und Simulatoren. Die Quantum-Hardware wird über Azure von Partnern integriert.

Es folgt eine Übersicht über die einzelnen Abschnitte der Q-Serie, nummeriert von Q1 bis Q16.

 

Qubit-Algorithmen für die Schule - die Q-Serie

Q1 Etwas ist anders! - Qubit-Algorithmen

Die An-Moderation.

Q2 Etwas ist anders! - Hello Qubit World

Wir machen uns damit vertraut, wie ein Qubit-Algorithmus "aussieht", auch wenn wir die Details jetzt noch nicht verstehen. Jedenfalls schon ganz schön exotisch.

Q3 Vom Bit- zum Qubit-Modell

Wir entdecken das Bit neu als "kleinen Bruder" des Qubits. Wir finden eine Black Box mit der Bezeichnung BIT vor, experimentieren damit und machen uns so ein BIT-Modell. Am Ende finden wir eine Blue Box mit der Aufschrift ZBIT vor.

Q4 ZBIT – unterwegs zum Qubit-Modell

Wir experimentieren mit der ZBIT-Box und stellen fest, dass sie sich an einer Stelle ganz anders verhält als die BIT-Box, nämlich zufällig! Damit sind wir schon auf dem halben Weg zum Qubit. Wir untersuchen die Blue Box und machen uns ein Modell, das wie eine ZBIT-Box funktionieren soll. Stellen allerdings fest, dass das im ersten Anlauf nicht richtig klappt.

Q5 Ein verbessertes ZBIT-Modell

Wir entwickeln ein Modell für ZBIT, das passt. D.h. man kann die Experimente damit nachvollziehen und erklären. Und Voraussagen machen, die wir durch Experimente mit der Blue Box bestätigen können. Bis hierhin haben wir auch schon einiges an abkürzenden Schreibweisen verwendet, die später auch als Gerüst für die Beschreibung von Qubit-Algorithmen dienen. Wir haben auch gelernt, dass "Messen" eine wichtige Rolle spielt, um Aussagen über den Zustand einen ZBIT-Modells zu machen.

Q6 Zwischenspiel - ZBIT-Spielereien

Namen sind Schall und Rauch. Nicht wie sie heißen, macht Zustände zu ZBIT-Zuständen, sondern wie man sie verwendet. Wir spielen ein wenig herum mit verschiedenen Möglichkeiten ein ZBIT-Modell zu beschreiben: vom Basketball-Spiel über die Grafik aus Q2 (Hello Qubit-World) bis zu Punkten im x-y-Koordinatensystem.

Q7 Qubit - Ein Modell für Qubit Algorithmen

Mit der Grey Box QBIT lernen wir das Verhalten von Qubits kennen und verstehen. Die "Experimente" sind vielfältiger, damit auch ihre Beschreibung als elementare Algorithmen. Die QBIT-Zustände haben wir aber schon am Ende der ZBIT-Spielereien richtig als Punkte im x-y-Koordinatensystem dargestellt. Das ZBIT ist tatsächlich schon ein vereinfachtes Qubit - mit seinen Zuständen, Operatoren und Messvorschriften.

Q8 Fingerübungen - Einfache Qubit Algorithmen ausprobiert

Einfache 1-Qubit und erste 2-Qubit Operationen werden vorgestellt in Form einer einfachen symbolischen Notation und als Gates (Gatter) in Composer Circuits (Schaltkreise). Wir lernen die Wirkung und das Zusammenwirken von einigen Gates verstehen, darunter ein erstes Controlled Gate, CNOT, dessen Wirkung auf einen Qubit-Zustand vom Zustand eines anderen Qubit abhängt. Gelegentlich verwenden wir alternativ zur Koordinatendarstellung auch die |0>, |1> Form (Ket-Notation) zur Kennzeichnung von Zuständen.

Q9 Verschränkung und andere 2-Qubit Phänomene

Wir probieren weitere einfache 2-Qubit Algorithmen aus und erklären die Zustandsabfolge und die Messergebnisse. Wir stoßen dabei erstmalig auf die Verschränkung von 2-Qubit-Zuständen und den Kickback-Effekt, beides wichtige Elemente in Qubit-Anwendungen.  Die Wirkung von Gates und die Zustandsabfolgen werden berechenbar durch einfache Formeln auf Basis der Zustandskoordinaten.

Q10 Qubit-Algorithmen - Hinter die Kulissen geschaut

"Hinter die Kulissen schauen" heißt, die Effekte der Zwei- und Mehr-Qubit Algorithmen durch Zustandsübergänge und Messungen zu erklären.  Mittels Koordinatendarstellung und Gate-Formeln. Bei dieser Gelegenheit lernen wir noch einige weitere Gates aus dem Repertoir der Qubit-Algorithmik und des Composers kennen. Unter anderem das über 3 Qubits wirksame Toffoli Gate.

Q11 3-Qubit Circus

Mit mehr Qubits werden Qubit-Algorithmen vielfältiger - aber auch komplizierter zu verfolgen. Wir konstruieren und analysieren einige 3-Qubit Circuits. Auch bei 3-Qubit-Systemen gibt es den Effekt der Verschränkung, sogar noch vielfältiger.

Q12 Ein echter Quanten-Würfel in 3 Qubits

Mit diesem Abschnitt und den folgenden stellen wir Qubit-Algorithmen vor, die man (fast) als praktische Anwendungen sehen kann. Der erste ist ein normaler 6-flächiger Würfel, der, wenn er auf einem realen Quantencomputer ausgeführt wird, einen echten Zufallswürfel darstellt, der nach den Gesetzen der Quantenphysik prinzipiell nicht vorausberechenbar ist. Hilfestellung für die Idee dieses 3-Qubit Algorithmus liefert eine 3-Qubit-Verschränkung, der sog. W-Zustand, den wir hier näher untersuchen.

Q13 Superdichte Codierung und Quanten-Kommunikation

Wir konstruieren und untersuchen Qubit-Algorithmen, mit denen man prinzipiell mehr Bits in weniger Qubits codieren und übertragen kann. Also z.B. 2 Bits in einem Qubit. Das Modell der superdichten Quanten-Kommunikation ist zwar ungewöhnlich aber mit unseren Mitteln leicht nachvollziehbar. Auch hier spielt wieder die Verschränkung eine Rolle. Das Verfahren funktioniert auch in Realität. Quanten-Kommunikation hat man schon über hunderte von Kilometern getestet,

Q14 Quanten-Teleportation

Während Quanten-Kommunikation die Übertragung von Bits mittels verschränkter Qubits ermöglicht, bedeutet Quanten-Teleportation (trotz dieses SciFi Wortes) das Übertragen eines Qubit-Zustands auf ein anderes, entferntes Qubit mittels Bit-Information, die zuvor aus Messungen gewonnen wurde. Wir konstruieren, anlysieren und diskutieren den Quanten-Teleportations-Algorithmus.

Q15 Ein Geheimnis mit einer Frage rauskriegen - Bernstein-Vazirani-Algorithmus

Wir stehen vor der Aufgabe, eine geheime Bit-Kette herauszufinden, etwa einen Code oder den Weg durch ein Labyrinth. Wir probieren es mit klassichen (Bit-)Algorithmen, die typscherweise immer eine gewisse Anzahl von "Fragen" benötigen, und schließlich mit einem Qubit-Algorithmus, der das mit nur einer "Frage" schafft. Wir haben damit ein erstes Beispiel für einen Beschleunigungseffekt durch Qubit-Parallelismus. Wir untersuchen, wie das geht und warum das geht und wie man das allgemein verwenden kann.

In diesem Abschnitt führen wir auch die Qubit-Programmierung mittels Qiskit ein. Ein Link verweist auf ein vollständiges, lesbares Qiskit/Python-Programm.

Q16 Was man so liest

Hier diskutieren wir den Sprachgebrauch und einige typische Aussagen, wie sie in den Medien zum Thema Quantencomputing immer wieder auftauchen. Was ist gemeint, was ist dran, wie muss man das verstehen und - was steckt eigentlich dahinter? Wir tun dies auf der Basis des erworbenen Verständnisses aus dieser Q-Serie.

QX Etwas ist anders - und es gibt noch viel mehr

Es ist zu erwarten, dass sich weitere interessante Ideen und Algorithmen ergeben, die sich auf der Ebene "Schulwissen" ebensogut darstellen lassen, wie die bisherigen Beispiele, auch wenn sie vielleicht noch etwas komplizierter werden.  Nur was man erklären kann, hat man verstanden. Ideen können gerne auch aus Kommentaren und Mitteilungen zu dieser Blog-Serie kommen. Die würden wir in weiteren Blog-Abschnitten unter QX aufnehmen.

Und hier beginnt die Q-Serie.

 

*) Update Aug. 2020: Das Erscheinungsbild der IBM Quantum Experience Umgebung hat seit etwa August 2020 ein Update erfahren. Inbesondere das User Interface des Circuit Composers hat sich etwas verändert. Es gibt mehr vordefinierte Gates, ein paar andere Voreinstellungen und Farben. Mit Blick auf die Beispiel-Circuits in der Blog-Serie habe sich aber im Wesentlichen nur die Farben der Gates geändert. Interessant ist auch, dass auf der Oberfläche nicht nur der Circuit dargestellt wird, sondern auch gleich die Ergbnisse von Messungen, sowie andere interessante Informationen, auf die wir in den Blogs nicht eingegangen sind. Dazu gehört auch, wenn man es richtig versteht, eine Darstellung des aktuellen Superposition (Statevector), also die n-Qubit Basiszutände mit ihren Koeffizienten (Amplituden genannt).

 

Dank

Unser Dank geht unter anderem an Dr. Roman Wienands für die Antworten auf viele algorithmische Detailfragen. Dr. Wienands und der Zweitautor führen übrigens seit vielen Jahren sehr erfolgreich Seminare zu "Algorithmen im Schulunterricht" für die Lehererausbildung am Mathematischen Institut der Universität zu Köln durch. Seit einiger Zeit auch zu Themen aus der Künstlichen Intelligenz und dem Quantencomputing.

Der Zweitautor hat darüber hinaus die Kapitel der Q-Serie als Diskussionspartner intensiv begleitet, die Texte akribisch durchgesehen und, natürlich, viele Fehler und einige Unverständlichkeiten gefunden.

Zu diesem Einführungstext wird es ein Companion-Text geben, der die gesellschaftlichen und bildungspolitischen Aspekte des Quanten-Computing sowie dessen erwartete Möglichkeiten beleuchtet.

Kontakte

Prof. Dr. Ulrich Trottenberg: ulrich.trottenberg@interscience.de

Dr. Bernhard Thomas: bernhard.thomas@interscience.de


P.S. zum Brief an einen Freund in der Corona-Krise

P.S. zum Brief an einen Freund in der Corona-Krise

Angesichts der explodierenden Fülle von Corona-bezogenen Artikeln in allen Medien - wie kann man da relevante von irrelevanten bis hin zu gezielt irreführenden „Beiträgen“, wie kann man Wahrheit von Unsinn und Unwahrheit unterscheiden? Das kann sehr mühsam sein: Um einer systematischen Unterscheidung willen müsste man die Artikel erstens lesen, zweitens ihre Relevanz untersuchen und sich drittens in vielen Fällen auch noch intensiv mit den Inhalten auseinander setzen. Das kostet Zeit, bringt selten bedeutsame Erkenntnis und erzeugt am Ende oft nur Ärger und Frustration. Ich selbst habe es deshalb aufgegeben, mich mit der Informationsflut zu befassen, mit der die Medien (und meine Mailbox) täglich überschwemmt werden. Dass dabei dann auch kluge, lesenswerte Beiträge ungelesen bleiben, das nehme ich in Kauf. Meine reale Informationsquelle sind die Zeitungen und Zeitschriften, von deren Solidität und Unabhängigkeit ich mich in vielen Jahren überzeugen konnte. Dass auch in diesen Organen die inhaltliche oder redaktionelle Qualität der Beiträge bisweilen drittklassig ist, auch das nehme ich in Kauf.

Mir ist im übrigen sehr bewusst, wie privilegiert ich als Wissenschafter bin: Als langjähriges Mitglied im Vorstand des Kuratoriums der Wissenschaftspressekonferenz (WPK) habe ich großes Vertrauen in die Arbeit der WPK-Mitglieder. Meine wichtigste Informationsquelle sind und bleiben schließlich die vielen hoch qualifizierten Kollegen aus allen Fakultäten, die ich im Laufe meiner wissenschaftlichen Arbeit und als Forschungsmanager kennengelernt habe. Diese Kollegen kann ich jederzeit ansprechen oder anrufen, wenn ich selbst im Zweifel bin oder Fragen habe.


Offener Brief an einen Freund in der Corona-Krise

Lieber Freund,

die Corona-Krise hat uns voneinander entfernt. Du hast, gleich nachdem Bund und Länder die harten Maßnahmen des Social Distancing und des Shutdown beschlossen hatten, gegen die Maßnahmen protestiert und zum öffentlichen Protest (auf Deiner Webseite) aufgerufen. Es war für Dich klar und Du hast von mir erwartet, dass ich - als Mathematiker - Dich in Deinen Bemühungen, den Protest öffentlich zu machen, unterstützen würde.

Für mich war die Sache so einfach nicht. Auch ich war über manche der öffentlichen Äußerungen von Experten und Politikern in Talkshows und auf Pressekonferenzen bisweilen irritiert. Die Gefährlichkeit des Virus wurde z.B. oft durch Zahlen und Kurven belegt, die ich als Mathematiker für unverständlich und irreführend halte. Von Beginn der Krise an war die Datenbasis unzureichend und unübersichtlich und die Statistik infolgedessen äußerst fragwürdig; die Interpretation des Zahlenmaterials durch die Medien erschien mir bisweilen durchaus willkürlich. (Einige der Fragen, die sich mir stellten, habe ich schon an anderer Stelle veröffentlicht.) Trotz dieser Fragen hatte ich nie Zweifel an der unbestreitbar hohen Kompetenz der erstklassigen Experten, über die wir in Deutschland verfügen. Einige kenne ich auch persönlich; sie geben ohne Zweifel ihr bestes, um die Situation realistisch einzuschätzen und die aktuellen Probleme zu bewältigen. Dass es auch unter Experten immer mal wieder Selbstdarsteller gibt, denen ihr Auftritt und ihre Wirkung wichtiger ist als die Sache - das ist nun einmal leider so. Insgesamt war und bin ich aber überzeugt, dass wir mit unseren Experten höchst zufrieden sein können.

Dass die von der Bundesregierung und den Ländern getroffenen Maßnahmen hart waren, was die Wirtschaft, die Arbeitswelt, die Gesellschaft als Ganzes, das öffentliche und das private, familiäre Leben angeht, ist auch unbestreitbar. Und dass gerade jetzt, wo es um eine vorsichtige Öffnung geht, manche Einzelentscheidungen schwer zu verstehen und fragwürdig sind, auch das kann ich den Kritikern gern zugestehen. Aber dass unser Rechtsstaat bedroht sei und die Gefahr bestünde, einige unserer grundgesetzlich garantierten Rechte könnten uns auf Dauer abhanden kommen - das sehe ich überhaupt nicht. Jeder Verantwortliche weiß, dass wir uns in einer extremen Ausnahmesituation befinden und dass die Maßnahmen nur durch diese Ausnahmesituation gerechtfertigt sind. Einzelne Maßnahmen können trotzdem grundsätzlich oder praktisch falsch sein; und es kann dringend erforderlich sein, solche problematischen Maßnahmen nachträglich einer juristischen oder parlamentarischen Kontrolle zu unterziehen.

Während die Gefährlichkeit der Pandemie und die Angemessenheit der Maßnahmen in vielen  Bereichen noch diskutabel sein mögen -  bei den meisten der absurden Gerüchte und abwegigen Verschwörungstheorien, mit denen die Öffentlichkeit seit Wochen überschüttet wird, hört für mich jede Toleranz auf. Besonders empören mich die Darstellungen im Internet, die von angeblichen Experten in einer Weise verbreitet werden, dass der Laie kaum eine Chance hat, sie von fundierten Aussagen kompetenter Experten zu unterscheiden. Und ich kann auch solche Plattformen nicht akzeptieren, die sich "offen" geben und zwischen relevanten und subtil diffamierenden Beiträgen nicht differenzieren. Solchen Diffamierungen sind manche untadeligen, hochkompetenten Wissenschaftler (wie z.B. Christian Drosten) und weltweit engagierte Philanthropen (wie Bill Gates) ausgesetzt. Unerträglich.

Es ist mir wichtig, Dir meine Sicht der Dinge zu erklären. Ich sehe mich als Wissenschaftler der Wahrheit verpflichtet. Dabei ist mir bewusst, dass Wahrheit ein großes Wort ist und die Wahrheit oft schwer zu erkennen ist. Aber wo man die Unwahrheit kennt oder erkannt hat, gibt es keine Rechtfertigung, sie zu verbreiten.

Ich weiß, dass wir uns beide der Wahrheit in diesem Sinne verpflichtet fühlen.

Dein Ulrich


Zur Ausbreitung der Corona-Infektionen: Wachstumsmodelle

Die Corona-Krise, ihre Bewertung und die Maßnahmen zu ihrer Bewältigung sind seit Wochen das alles beherrschende Thema in den Medien. Dabei kommt neben den medizinischen, biologischen, wirtschaftlichen, gesellschaftlichen, rechtlichen und ethischen Fragen, die das Virus aufwirft, auch die Mathematik ins Spiel. Es sind mehrere Themenkomplexe, bei denen die Mathematik gefragt ist und adressiert wird: bei der Statistik der Datenerfassung und –auswertung, bei der Modellierung der Ausbreitung und der Ausbreitungsgeschwindigkeit der Infektionen, aber auch bei der Modellierung der wirtschaftlichen Auswirkungen des Shutdowns. Ferner spielen u.a. Methoden des Maschinellen Lernens bei der Suche nach einem Impfstoff oder nach Medikamenten eine wesentliche Rolle.

Wir wollen hier nur den Komplex der Ausbreitung der Infektionen ansprechen. In den Medien spielt dabei das Modell des exponentiellen Wachstums eine besondere Rolle. Außer von Virologen und Epidemiologen hören wir es von Vertretern aller Medien und von Politikern. Mathematiker kommen in der Öffentlichkeit kurioserweise kaum oder eher am Rande zu Wort.

Zur Charakterisierung der Ausbreitung der Infektionen werden in den Medien eine Vielzahl von Kurven gezeigt, oft erstaunlich nichtssagende Kurven, deren Sinn von Laien nicht und Experten nur mit Mühe verstanden werden können. Manche der Kurven werden in einem Achsenkreuz gezeigt, ohne dass die Achsen bezeichnet oder erläutert würden, so dass nicht klar wird, was die Kurven eigentlich veranschaulichen.

Zum Beispiel wurden in der anfänglichen Berichterstattung in den Medien zur Erklärung, warum eine Verlangsamung der Virus-Ausbreitung (durch Isolierung, Kontaktreduktion, soziale Distanzierung) medizinisch sinnvoll und notwendig ist, oft jeweils zwei Kurven gezeigt, deren Form an „Normalverteilungen“ aus der Statistik erinnern (eine spitze und eine flache Kurve). Zu diesen Kurven wird erklärt, dass sie einerseits die schnelle, ungebremste Ausbreitung (die spitze Kurve) und andererseits eine systematisch verlangsamte, zeitlich gedehnte Ausbreitung der Infektionen (die flache Kurve) beschreiben. Dabei soll eine waagerechte Linie, unter der die flache Kurve verläuft, die Kapazitätsgrenze für Intensivbehandlungen in deutschen Krankenhäusern charakterisieren. Diese Kurven haben aber keine präzise bezeichnete mathematische Bedeutung, sondern eher symbolischen Charakter.

Um etwas mehr Klarheit in die Vielfalt der Darstellungen zu bringen, wollen wir hier ein paar allgemeine Worte über „mathematische Wachstumsmodelle“ sagen. Dabei wenden wir uns ganz bewusst an den mathematisch nicht besonders versierten oder interessierten Leser.

Die drei wichtigsten Wachstumsmodelle sind das lineare, das exponentielle und das logistische Modell. Um sich einen Eindruck, eine Idee dieser drei Modelle zu verschaffen, braucht man nur einen Blick auf die Form der zugehörigen Wachstumskurven zu werfen:

Von diesen drei Modellen ist das lineare Wachstumsmodell das einfachste und alltäglichste. Trotzdem gehen wir hier zunächst auf das Modell des exponentiellen Wachstums ein, weil von diesem seit dem Beginn der Corona-Krise in den Medien fast ausschließlich die Rede ist.

Exponentielles Wachstum ist eigentlich leicht zu verstehen: Wenn sich z.B. irgendeine Menge täglich verdoppelt, dann haben wir es mit exponentiellem Wachstum im engsten Sinne zu tun. Sich vorstellen kann man das ja sofort. Verblüffend ist aber, wie schnell die Menge nach einer eher ruhigen Startphase anwächst.

Veranschaulicht wird dieses Anwachsen gern durch die indische Legende vom Schachbrett mir den Reiskörnern. Bei Verdoppelung der Anzahl der Reiskörner von einem Feld des Schachbretts zum nächsten sieht das Wachstum am Anfang harmlos aus. Aber am Ende, nachdem alle 64 Felder belegt sind, übersteigt die Menge der Körner alle Vorstellungen. Allein auf dem letzten Feld müssten die Reisernten der ganzen Welt von vielen hundert Jahren untergebracht werden.

Eine andere Geschichte, das Gleichnis vom Lilienteich, soll die Bedrohlichkeit des exponentiellen Wachstum deutlich machen: In einem Teich wächst eine Linie täglich auf die doppelte Größe an. In den ersten Tagen ist die Ausbreitung scheinbar völlig bedeutungslos, so geht es weiter, und auch am 29.Tag ist „nur“ der halbe See von Lilien bedeckt. Aber dann, am 30. Tag, ist der See vollständig zugewachsen, und alles Leben im See erstickt…

Nun muss es bei exponentiellem Wachstum nicht eine tägliche Verdoppelung der betreffenden Menge sein, es kann auch ein anderer Zeitraum sein, der zu einer Verdoppelung führt, z.B. eine Verdoppelung alle 4 Tage oder alle 10 Tage.

Nur am Rande sei erwähnt, dass wir es z.B. bei der Zinsesverzinsung von Kapital (wenn die Zinsen nicht abgeschöpft, sondern dem Kapital hinzugefügt werden) ebenfalls mit exponentiellem Wachstum zu tun haben: Bei einem Jahreszinssatz von zum Beispiel 5 % würde sich das Kapital bei Zinsesverzinsung ungefähr alle 14 Jahre verdoppeln.

Die Situation verändert sich aber grundlegend, wenn der Zeitraum, in dem die Verdoppelung stattfindet, nicht konstant ist, sondern sich laufend verändert. Wenn also z.B. der Verdoppelungszeitraum erst 4 Tage, dann – nach einigen Wochen – nur noch 6 Tage, dann – noch einige Wochen später – vielleicht nur noch 10 Tage beträgt usw.

In einem solchen Fall, wenn der Zeitraum, in dem die Verdoppelung stattfindet, sich dauernd verändert (vergrößert), haben wir es nicht mehr mit exponentiellem Wachstum im engeren Sinne zu tun, sondern mit einem möglicherweise deutlich komplizierteren Anwachsen. Über einen größeren Zeitraum betrachtet, sieht das Wachstum dann vielleicht eher wie lineares Wachstum aus. Konkret: Wenn sich der Zeitraum, in dem die Verdoppelung stattfindet, ebenfalls verdoppelt, also von 4 auf 8 Tage, dann auf 16, danach auf 32 Tage usw. anwächst – dann ist das global gesehen kein exponentielles, sondern lineares Wachstum.

Lineares Wachstum lässt sich schnell abhandeln: Es wird durch eine gerade Linie charakterisiert. Es ist das uns vertrauteste Wachstumsmodell: Der Preis einer Ware steigt in der Regel linear mit der Menge der Ware, der Arbeitslohn sollte linear mit dem Zeitraum anwachsen, in dem die Arbeit ausgeübt wird usw. Bei allem, was wir in der Schule und im Alltag mit dem Dreisatz-Prinzip ausgerechnet haben und ausrechnen können, haben wir es mit linearen Beziehungen, mit linearem Wachstum zu tun.

Logistisches Wachstum als alternatives Modell zu exponentiellem Wachstum

Wie im Beispiel der Schachbrettlegende wächst unbegrenzt exponentielles Wachstum schließlich dramatisch schnell an, es geht sehr schnell ins quasi „Unendliche“.

In der Wirklichkeit ist exponentielles Wachstum aber nur theoretisch unbegrenzt, es geht praktisch eigentlich immer in eine andere Form des Wachstums über. Neben dem gerade behandelten einfachen linearen Wachstum ist ein sehr wichtiges, besonders realistisches Wachstumsmodell das logistische Wachstum.

Die obige Kurve zum logistischen Wachstum zeigt (von links nach rechts) das Charakteristische des logistischen Wachstums: Zu Beginn, in der Startphase, verhält sich die Kurve wie beim exponentiellen Wachstum, ändert dann aber – an einem „Wendepunkt“ – ihre Richtung, wird flacher und nähert sich immer mehr einer waagerechten Geraden an. Das Wachstum wird durch diese Gerade begrenzt. In der Realität ist der Übergang vom exponentiellen Wachstum in begrenztes Wachstum in aller Regel dadurch bedingt, dass Ressourcen beschränkt sind und aufgebraucht werden

Auch auf die Corona-Ausbreitung bezogen, haben wir es langfristig mit logistischem Wachstum zu tun: Wenn die senkrechte Achse die Gesamtzahl aller Infizierten (einschließlich der bereits Genesenen) beschreibt, ist klar, dass weitere Infektionen spätestens dann ausgeschlossen sind, wenn alle Individuen infiziert sind oder waren (und eine zwei- oder mehrmalige Infektion ausgeschlossen ist). Nach den Erkenntnissen der Epidemiologie ist sogar zu erwarten, dass eine solche Begrenzung praktisch schon erreicht wird, wenn etwa 70% der Individuen infiziert sind oder waren. (Man spricht dann auch von „Herdenimmunität“.)

Die derzeitigen Maßnahmen zur Kontaktminimierung (im April 2020) zielen dagegen darauf ab, zu erreichen, dass die sogenannte Reproduktionszahl R (möglichst deutlich) kleiner als 1 ist, das heißt dass jedes Infizierte Individuum im Mittel (möglichst deutlich) weniger als ein weiteres Individuum mit dem Virus infiziert. . Wenn das gelingt, wird die Gesamtzahl der gleichzeitig Infizierten auf Dauer (deutlich) abnehmen. Wenn man die Reprodukionszahl R, ihre zeitliche Entwicklung und die dadurch bedingte Ausbreitung der Infektion durch Kurven veranschaulicht, haben diese Kurven eine andere Bedeutung als die oben diskutierten Kurven und Modelle, weil sich R nicht auf die Gesamtzahl der Infizierten, sondern nur auf die jeweils aktuell Infizierten (ohne die bereits Genesenen und Verstorbenen) bezieht. Selbst in solchen Fällen, bei denen die in den Medien präsentierten Kurven eine mehr oder weniger präzise Bedeutung haben, muss man also genau hinsehen und bei der Interpretation der Kurven vorsichtig sein.

Resumee

Für die Ausbreitung der Corona-Infektion ist also das exponentielle Modell immer nur kurzfristig oder für eine bestimmte Zeitspanne relevant: die Wachstumsraten ändern sich, insbesondere als Folge der getroffenen Maßnahmen, von Tag zu Tag. Global, auf lange Sicht gesehen, wird das Wachstum in ein logistisches Wachstum übergehen. Die getroffenen Maßnahmen zielen jedenfalls darauf ab, dass sich ein exponentielles Wachstum (z.B. in einer „zweiten Welle“) keinesfalls wieder einstellt.

Viele Fragen zum Corona-Virus, u. a. zu seiner Übertragbarkeit, zu seiner Gefährlichkeit, zu seiner Ausbreitungsdynamik, zu seiner Bekämpfung sind heute noch nicht oder nicht vollständig geklärt, und auch anerkannte Experten äußern sich nicht einheitlich über diese Fragen. Insbesondere die Corona-Datenerfassung ist unübersichtlich und uneinheitlich. Über die Gesamtzahl der Infizierten (die „Dunkelziffer“) wird viel spekuliert. Die zugehörige Statistik ist infolgedessen unsicher und oft fragwürdig. Im Hinblick auf die Aufklärung der Öffentlichkeit ist es umso wichtiger, dass das, was man sicher weiß, über die Medien klar und unmissverständlich kommuniziert und veranschaulicht wird, und möglichst nur das.

 


Zur Corona-Krise: Ist „Herdenimmunität“ ein realistisches Ziel?

Die Corona-Krise ist seit Wochen das beherrschende Thema in den Medien. Dabei kommt neben den medizinischen, biologischen, wirtschaftlichen, gesellschaftlichen, rechtlichen und ethischen Fragen, die das Virus aufwirft, auch die Mathematik ins Spiel. Es sind mehrere Themenkomplexe, bei denen die Mathematik gefragt ist und adressiert wird: bei der Statistik der Datenerfassung und –auswertung , bei der Modellierung der Ausbreitung und der Ausbreitungsgeschwindigkeit  der Infektionen,  aber auch bei der Modellierung der wirtschaftlichen Auswirkungen des Shutdowns. Daneben können z.B.  Methoden des Maschinellen Lernens bei der Suche nach einem Impfstoff oder nach Medikamenten genutzt werden.

Schon seit einigen Wochen werden in den offiziellen Verlautbarungen der Politik und der virologischen Experten im Wesentlichen zwei grundsätzliche Ziele und Strategien zur Überwindung der Krise genannt:

  1. Die Abflachung der Kurve der Corona-Infizierten insbesondere durch Isolierungsmaßnahmen. Damit soll erreicht werden, dass die Zahl der gleichzeitigen schweren Krankheitsverläufe jeweils (möglichst deutlich) unter der Gesamtkapazität der Intensivstationen der deutschen Krankenhäuser bleibt. Dadurch soll sichergestellt werden, dass es zu keiner Zeit zu Behandlungsengpässen in Krankenhäusern kommt und jeder Patient adäquat versorgt werden kann.
  1. Die „Durchseuchung“ der Gesamtbevölkerung zu etwa 70% mit der Corona-Infektion. Dabei gehen die Virologen davon aus, dass eine ca. „70%-Durchseuchung“ zu einer weitgehenden Immunität in der Bevölkerung („Herdenimmunität“) führen würde.In den ersten offiziellen Stellungnahmen, kurz nach Ausbruch der Krise, ist dieses Ziel  noch als durchaus erstrebenswert vertreten worden, u.a. von der Kanzlerin.

Offensichtlich – schon aus elementarmathematischen Gründen - vertragen sich diese beiden Ziele nicht gut mit einander: Während das Ziel 1 auf eine Minimierung der gleichzeitigen Infektionenund damit auf eine zeitliche Streckung  herausläuft, würde man das Ziel 2 „im Prinzip“  möglichst bald erreichen wollen, um damit die Krise zu überwinden. Praktisch kann man das Ziel 2 natürlich nicht auf Kosten der unkontrollierten Zunahme schwerer Krankheitsverläufe verfolgen.

Wenn man andererseits versuchen würde, beide Ziele miteinander zu kombinieren, müsste man eine sehr lange Zeit mit der Krise und entsprechenden Maßnahmen leben. Insofern bleibt nur die Hoffnung auf ein Medikament und auf einen Impfstoff.


Künstliche Intelligenz III: Zukunft gestalten, Werte erhalten

Die rasante Entwicklung der Künstlichen Intelligenz (KI) wirkt sich auch in Deutschland auf alle Lebens- und Arbeitsbereiche aus – und wirft die Frage auf, wie sich der Wandel vorteilhaft und verantwortungsvoll zugleich gestalten lässt. Folge vier unserer Digitalserie liefert Antworten.

In der Diskussion über rechtliche und ethische Aspekte von KI vermischen sich berechtigte Anliegen mit unbegründeten Ängsten. Berechtigt sind zum Beispiel Fragen nach Sicherheitsvorkehrungen und Kontrollmechanismen, wenn KI-Algorithmen lebenswichtige Entscheidungen treffen, etwa im juristischen Bereich oder in der medizinischen Diagnostik. Wie schwer eine klare Antwort auf die Frage fällt, wer im Einzelfall die Verantwortung für fatale Entscheidungen übernehmen soll, wird in der Debatte über das autonome Fahren deutlich. Jeder kann sich eine Situation vorstellen, in der sich ein Unfall nicht mehr vermeiden lässt und das autonome Fahrzeug in Bruchteilen von Sekunden über das Leben
und den Tod von Verkehrsteilnehmern entscheiden muss. Nach welchen Prinzipien sollen solche Entscheidungen fallen? Eine verbindliche Antwort ist bislang nicht gefunden.

Eigene Daten schützen

Auch die Sorge um den Datenschutz und die Privatsphäre ist verständlich. Im Prinzip aber bilden in Deutschland das Grundgesetz, Gesetze und die Datenschutzgrundverordnung der EU einen sinnvollen, für die digitale Welt gültigen Rechtsrahmen. Gefährlich ist eher ein leichtfertiger Umgang von Nutzern mit ihren eigenen Daten. Und was ist von Prognosen zu halten, die für die fernere Zukunft die Weltherrschaft superintelligenter Maschinen voraussagen? Alle KI-Systeme lösen ausschließlich spezielle Aufgaben. Aber die Systeme selbst sind Maschinen oder Algorithmen. Sie haben keine Gefühle und kein Bewusstsein, sondern verfolgen nur Ziele, für die sie programmiert sind. Roboter, die nicht nur
Einzelaufgaben lösen, sondern der menschlichen Intelligenz in ihrer Breite nahekommen, sind auch für die nächsten Jahrzehnte eine Illusion.

Deutschlands Stärken nutzen

Oft ist von der Dominanz der vier US-amerikanischen Internet-Giganten Google, Facebook, Amazon und Apple die Rede. In den Hintergrund treten dabei die guten Voraussetzungen, die Deutschland durch seine Verbindung aus klassischem Ingenieurwissen, theoretischer Fundierung und hoher KI-Forschungskompetenz hat. "Wenn wir die neuen Möglichkeiten der KI mit den klassischen Stärken unserer Unternehmen kombinieren, können wir neue Chancen im internationalen Wettbewerb schaffen und den digitalen Wandel nach unseren Wertvorstellungen gestalten", sagt Professor Stefan Wrobel, einer der prägenden KI-Experten in Deutschland.

In der Tat hat KI das Potenzial, die Lebensqualität zu verbessern und der Menschheit bei der Überwindung von Krankheiten, Armut und Ungleichheit zu helfen. Ein solcher Fortschritt setzt Gestaltungswillen und politische Digitalkompetenz zwingend voraus. Die Politik darf die KI-technologischen Entwicklungen nicht einfach nur laufen lassen, sondern muss sie im Dialog mit führenden Experten fördern und gestalten. Andernfalls wird sie ihrer Verantwortung nicht gerecht.

Der dramatischste Nachholbedarf besteht jedoch im Bereich der digitalen Aufklärung und Bildung. Und da geht es nicht in erster Linie um die Ausstattung aller Schüler mit einem Tabletcomputer, sondern um die digitalen Kerninhalte des Unterrichts. Ohne diese Inhalte und ein Grundverständnis für algorithmische Prinzipien bleiben Medienkompetenz und
digitale Bildung substanzlos.

 

Link zum Artikel